I

(Atti per i quali la pubblicazione è una condizione di applicabilità)

DIRETTIVA 1999/96/CE DEL PARLAMENTO EUROPEO E DEL CONSIGLIO

del 13 dicembre 1999

sul ravvicinamento delle legislazioni degli Stati membri relative ai provvedimenti da prendere contro l'emissione di inquinanti gassosi e di particolato prodotti dai motori ad accensione spontanea destinati alla propulsione di veicoli e l'emissione di inquinanti gassosi prodotti dai motori ad accensione comandata alimentati con gas naturale o con gas di petrolio liquefatto destinati alla propulsione di veicoli e che modifica la direttiva 88/77/CEE del Consiglio

IL PARLAMENTO EUROPEO E IL CONSIGLIO DELL'UNIONE EUROPEA,

visto il trattato che istituisce la Comunità europea, in particolare l'articolo 95.

viste le proposte della Commissione (1),

visto il parere del Comitato economico e sociale (2),

deliberando secondo la procedura di cui all'articolo 251 del trattato (3),

- considerando che occorrerebbe adottare misure nell'am-(1)bito del mercato interno;
- considerando che il primo programma di azione della (2)Comunità europea in materia di protezione dell'ambiente (4), approvato dal Consiglio il 22 novembre 1973, invita a tener conto dei più recenti progressi scientifici nella lotta contro l'inquinamento atmosferico provocato dai gas emessi dai veicoli a motore e ad adeguare in tal senso le direttive già adottate; che il quinto programma di azione, la cui impostazione generale è stata approvata dal Consiglio nella risoluzione del 1º febbraio 1993 (5), prevede che vengano compiuti ulteriori sforzi per ridurre significativamente il livello attuale delle emissioni inquinanti dei veicoli a motore;

considerando che è pacifico che lo sviluppo dei trasporti (3) nella Comunità ha inciso notevolmente sull'ambiente; che alcune previsioni ufficiali relative all'aumento dell'intensità del traffico si sono rilevate inferiori ai dati reali; che, per tale motivo, occorrerebbe definire norme rigorose in materia di emissioni per tutti i veicoli a motore;

considerando che la direttiva 88/77/CEE (6) prescrive i valori limite per le emissioni di ossido di carbonio, idrocarburi incombusti e ossidi di azoto prodotti dai motori ad accensione spontanea destinati ai veicoli a motore, basati su una procedura di prova rappresentativa delle condizioni europee di circolazione per i veicoli in questione; che detta direttiva è stata modificata una prima volta dalla direttiva 91/542/CEE (7) la quale prevede due fasi, di cui la prima (1992-1993) coincide con le date di entrata in vigore delle nuove norme europee in materia di emissioni delle autovetture; che la seconda fase (1995-1996) ha stabilito una prospettiva a più lungo termine per l'industria automobilistica europea fissando valori limite basati sul previsto progresso delle tecnologie ancora in fase di sviluppo, in modo da assegnare all'industria un periodo di tempo sufficiente al perfezionamento delle tecnologie medesime; che la direttiva 96/ 1/CE (8) richiede che per piccoli motori diesel con una cilindrata unitaria inferiore a 0,7 dm³ e un regime nominale superiore a 3 000 min⁻¹ il valore limite per le emissioni di particolato stabilite nella direttiva 91/542/ CEE venga introdotto invece a decorrere dal 1999; che, tuttavia, per motivi tecnici è ragionevole conservare una differenza nelle emissioni di particolato per piccoli motori diesel ad alta velocità con una cilindrata unitaria inferiore a 0,75 dm³ e un regime nominale superiore a

- (1) GU C 173 dell'8.6.1998, pag. 1, GU C 43 del 17.2.1999, pag. 25.

3 000 min⁻¹, ma eliminare tale differenza nel 2005;

GU C 407 del 28.12.1998, pag. 27.

⁽³⁾ Parere del Parlamento europeo del 21 ottobre 1998 (GU C 341 del 9.11.1998, pag. 74). posizione comune del Consiglio del 22 aprile 1999 (GU C 296 del 15.10.1999, pag. 1) e decisione del Parlamento europeo del 16 novembre 1999.

⁽⁴⁾ GU C 112 del 20.12.1973, pag. 1.

⁽⁵⁾ GU C 138 del 17.5.1993, pag. 1.

considerando che, a norma dell'articolo 5, paragrafo 3 della direttiva 91/542/CEE, la Commissione doveva rife-

⁽⁶⁾ GU L 36 del 9.2.1988, pag. 33.

⁽⁷⁾ GU L 295 del 25.10.1991, pag. 1.

⁽⁸⁾ GU L 40 del 17.2.1996, pag. 1.

rire al Consiglio, entro la fine del 1996, sui progressi realizzati in merito alla revisione dei valori limite per le emissioni inquinanti corredata, se del caso, di una revisione della procedura di prova; che tali limiti rivisti non vanno applicati anteriormente al 1º ottobre 1999 per quanto riguarda le nuove omologazioni per tipo;

ΙT

- (6) considerando che la Commissione ha realizzato un programma europeo sulla qualità dell'aria, sulle emissioni provocate dal traffico stradale e sulle tecnologie dei combustibili e dei motori (il programma Auto-Oil) per soddisfare i requisiti posti dall'articolo 4 della direttiva 94/12/CE (¹); che uno studio di redditività economica condotto nell'ambito del programma Auto-Oil ha dimostrato la necessità di un miglioramento ulteriore della tecnologia dei motori ad accensione spontanea per veicoli pesanti con l'obiettivo di realizzare entro il 2010 la qualità dell'aria descritta nella comunicazione della Commissione sul programma Auto-Oil;
- (7) considerando che il miglioramento delle prescrizioni relative ai nuovi motori ad accensione spontanea previsti dalla direttiva 88/77/CEE è parte di una strategia comunitaria globale che prevede inoltre, a decorrere dall'anno 2000, una revisione delle norme relative ai veicoli commerciali leggeri ed alle autovetture, un miglioramento dei combustibili per motori e una verifica più accurata delle prestazioni dei veicoli in circolazione;
- (8) considerando che la direttiva 88/77/CEE è una delle direttive particolari previste dal procedimento di omologazione istituito dalla direttiva 70/156/CEE del Consiglio, del 6 febbraio 1970, sul ravvicinamento delle legislazioni degli Stati membri relative all'omologazione dei veicoli a motore e dei loro rimorchi (²); che l'obiettivo di ridurre il livello delle emissioni inquinanti dei veicoli a motore non può essere realizzato in modo soddisfacente dai singoli Stati membri e può, di conseguenza, essere meglio realizzato mediante il ravvicinamento delle legislazioni degli Stati membri relative alle misure da adottare contro l'inquinamento atmosferico prodotto dai veicoli a motore:
- considerando che la riduzione dei limiti di emissione applicabili a decorrere dall'anno 2000, corrispondente ad una diminuzione del 30% delle emissioni di ossido di carbonio, idrocarburi totali, NO_x e particolato, è stata considerata dal programma Auto-Oil come un provvedimento essenziale per raggiungere un livello sufficiente di qualità dell'aria a medio termine; che una riduzione del 30% dell'opacità del fumo di scarico rispetto a quella misurata sui tipi di motore attuali e ad integrazione della direttiva 72/306/CEE del Consiglio (3) favorirà la riduzione del particolato; che ulteriori riduzioni dei limiti di emissione applicabili a decorrere dall'anno 2005, pari al 30% dell'ossido di carbonio, degli idrocarburi totali e dei NO_x e all'80% del particolato, contribuiranno notevolmente al miglioramento della qualità dell'aria a medio termine; che queste riduzioni terranno conto dell'effetto

sulle emissioni di nuovi cicli di prova più rappresentativi delle condizioni di circolazione incontrate dai veicoli in circolazione; che l'applicazione del nuovo limite relativo ai $\mathrm{NO_x}$ a decorrere dall'anno 2008 comporterà un'ulteriore riduzione del 43% del limite di emissione per questo inquinante; che, entro il 31 dicembre 2002, la Commissione deve esaminare la tecnologia disponibile nell'intento di confermare la norma obbligatoria riguardante i $\mathrm{NO_x}$ per l'anno 2008 in una relazione da sottoporre al Parlamento europeo e al Consiglio, corredata, se del caso, di appropriate proposte;

- (10) considerando che sono introdotti valori di emissione limite facoltativi applicabili ai veicoli ecologici migliorati (EEV);
- (11) considerando che il sistema diagnostico di bordo (OBD) non è pienamente sviluppato per i veicoli pesanti, ma dev'essere introdotto a decorrere dall'anno 2005 al fine di consentire un'individuazione immediata dei guasti di componenti e sistemi critici ai fini delle emissioni installati sui veicoli e, conseguentemente, di migliorare in modo significativo il mantenimento delle caratteristiche iniziali delle emissioni nei veicoli in circolazione mediante miglioramenti nel controllo e nella manutenzione; che dovrebbero essere introdotte, a decorrere dall'anno 2005, specifiche prescrizioni in materia di durata dei nuovi motori pesanti e di verifica della conformità dei veicoli pesanti in circolazione;
- considerando che l'introduzione di nuovi cicli di prova per l'omologazione relativamente alle emissioni gassose e di particolato e all'opacità del fumo consentirà una valutazione più rappresentativa dei livelli di emissione dei motori ad accensione spontanea in condizioni di prova più rappresentative di quelle incontrate dai veicoli in circolazione; che è introdotta una nuova procedura combinata di prova (due cicli) per i motori ad accensione spontanea convenzionali e per i motori ad accensione spontanea dotati di catalizzatori di ossidazione; che è introdotta una nuova procedura combinata di prova (due cicli) per motori a gas e, in aggiunta, per motori ad accensione spontanea provvisti di sistemi avanzati di controllo delle emissioni; che, a decorrere dall'anno 2005, tutti i motori ad accensione spontanea devono essere sottoposti ad entrambi i cicli di prova applicabili; che la Commissione seguirà attentamente i progressi conseguiti nei negoziati per una procedura di prova armonizzata a livello mondiale;
- (13) considerando che si dovrebbe consentire agli Stati membri di accelerare l'immissione sul mercato di veicoli che soddisfino i requisiti adottati a livello comunitario, mediante incentivi fiscali che devono essere conformi alle disposizioni del trattato e rispondere a talune condizioni intese ad evitare distorsioni nel mercato interno; che le disposizioni della presente direttiva non pregiudicano il diritto degli Stati membri di includere le emissioni di inquinanti e di altre sostanze nella base di calcolo delle tasse di circolazione dei veicoli a motore;

⁽¹⁾ GU L 100 del 19.4.1994, pag. 42.

⁽²⁾ GU L 42 del 23.2.1970, pag. 1. Direttiva modificata da ultimo dalla direttiva 98/91/CE del Parlamento europeo e del Consiglio (GU L 11 del 16.1.1999, pag. 25).

⁽³⁾ GU L 190 del 20.8.1972, pag. 1. Direttiva modificata da ultimo dalla direttiva 97/20/CE (GU L 125 del 16.5.1997, pag. 21).

(14) considerando che, nell'elaborare la legislazione comunitaria sulle emissioni dei veicoli a motore, è opportuno tener conto dei risultati delle ricerche in corso sulle caratteristiche del particolato;

IT

- (15) considerando che la Commissione riferirà prima del 31 dicembre 2000 sull'evoluzione dei dispositivi per il controllo delle emissioni dei veicoli pesanti dotati di motore ad accensione spontanea e sulla relazione con la qualità del combustibile, sulla necessità di migliorare la precisione e la riproducibilità della misurazione del particolato e delle procedure di campionamento, nonché sull'elaborazione di un ciclo di prova armonizzato a livello mondiale;
- (16) considerando che la direttiva 88/77/CEE dovrebbe essere modificata di conseguenza,

HANNO ADOTTATO LA PRESENTE DIRETTIVA:

Articolo 1

La direttiva 88/77/CEE è così modificata:

1) Il titolo è sostituito dal testo seguente:

«Direttiva 88/77/CEE del Consiglio, del 3 dicembre 1987, concernente il ravvicinamento delle legislazioni degli Stati membri relative ai provvedimenti da prendere contro l'emissione di inquinanti gassosi e di particolato prodotti dai motori ad accensione spontanea destinati alla propulsione di veicoli e contro l'emissione di inquinanti gassosi prodotti dai motori ad accensione comandata alimentati con gas naturale o con gas di petrolio liquefatto destinati alla propulsione di veicoli».

2) L'articolo 1 è sostituito dal seguente:

«Articolo 1

Ai fini della presente direttiva, si intende per:

- "veicolo", qualsiasi veicolo, come definito nell'allegato II, parte A della direttiva 70/156/CEE, azionato da un motore ad accensione spontanea o a gas, ad eccezione dei veicoli della categoria M1 aventi massa massima a carico tecnicamente ammissibile inferiore o pari a 3,5 tonnellate;
- motore ad accensione spontanea o a gas", la fonte di propulsione motrice di un veicolo che può essere omologata in quanto entità tecnica ai sensi dell'articolo 2 della direttiva 70/156/CEE;
- "EEV", veicolo ecologico migliorato, il veicolo azionato da un motore conforme ai valori di emissione limite facoltativi indicati nella riga C delle tabelle di cui al punto 6.2.1 dell'allegato I.»

3) Gli allegati da I a VIII sono sostituiti dagli allegati da I a VIII di cui all'allegato della presente direttiva.

Articolo 2

- 1. A decorrere dal 1º luglio 2000 gli Stati membri non possono, per motivi attinenti agli inquinanti gassosi ed al particolato emessi da un motore e all'opacità del fumo prodotto:
- rifiutare l'omologazione CE o il rilascio del documento di cui all'articolo 10, paragrafo 1, ultimo trattino della direttiva 70/156/CEE ovvero l'omologazione di portata nazionale per un tipo di veicolo azionato da un motore ad accensione spontanea o a gas, ovvero
- vietare l'immatricolazione, la vendita, l'immissione in circolazione o l'utilizzazione di veicoli nuovi di tale tipo, ovvero
- rifiutare l'omologazione CE per un tipo di motore ad accensione spontanea o a gas, ovvero
- vietare la vendita o l'utilizzazione di nuovi motori ad accensione spontanea o a gas,

qualora siano soddisfatti i requisiti di cui agli allegati della direttiva 88/77/CEE, come modificata dalla presente direttiva, in particolare se le emissioni di inquinanti gassosi e di particolato e l'opacità del fumo prodotte dal motore siano conformi ai valori limite fissati nella riga A o nelle righe B1 o B2 ovvero ai limiti di emissione fissati nella riga C delle tabelle di cui al punto 6.2.1 dell'allegato I della direttiva 88/77/CEE, come modificata dalla presente direttiva.

- 2. A decorrere dal 1º ottobre 2000, gli Stati membri:
- non possono più rilasciare un'omologazione CE o emettere il documento di cui all'articolo 10, paragrafo 1, ultimo trattino della direttiva 70/156/CEE e
- rifiutano l'omologazione di portata nazionale

per i tipi di motori ad accensione spontanea o a gas e i tipi di veicoli azionati da un motore ad accensione spontanea o a gas nel caso in cui le emissioni di inquinanti gassosi e di particolato e l'opacità del fumo prodotte dal motore non siano conformi ai valori limite fissati nella riga A delle tabelle di cui al punto 6.2.1 dell'allegato I della direttiva 88/77/CEE, modificata dalla presente direttiva.

3. A decorrere dal 1º ottobre 2001, ad eccezione dei veicoli e dei motori destinati all'esportazione in paesi terzi e dei motori di sostituzione per i veicoli in circolazione, gli Stati membri:

 cessano di considerare validi i certificati di conformità che accompagnano i veicoli nuovi o i motori nuovi conformi alla direttiva 70/156/CEE ai fini dell'articolo 7, paragrafo 1 della medesima, e

ΙT

vietano l'immatricolazione, la vendita, l'immissione in circolazione o l'utilizzazione di veicoli nuovi azionati da un motore ad accensione spontanea o a gas e la vendita e l'utilizzazione di motori nuovi ad accensione spontanea o a gas,

qualora le emissioni di inquinanti gassosi e di particolato e l'opacità del fumo prodotte dal motore non siano conformi ai valori limite fissati nella riga A delle tabelle di cui al punto 6.2.1 dell'allegato I della direttiva 88/77/CEE, modificata dalla presente direttiva.

- 4. A decorrere dal 1º ottobre 2005, gli Stati membri:
- non possono più rilasciare un'omologazione CE o emettere il documento di cui all'articolo 10, paragrafo 1, ultimo trattino della direttiva 70/156/CEE e
- rifiutano l'omologazione di portata nazionale

per i tipi di motori ad accensione spontanea o a gas e i tipi di veicoli azionati da un motore ad accensione spontanea o a gas nel caso in cui le emissioni di inquinanti gassosi e di particolato e l'opacità del fumo prodotte dal motore non siano conformi ai valori limite fissati nella riga B1 delle tabelle di cui al punto 6.2.1 dell'allegato I della direttiva 88/77/CEE, modificata dalla presente direttiva.

- 5. A decorrere dal 1º ottobre 2006, ad eccezione dei veicoli e dei motori destinati all'esportazione in paesi terzi e dei motori di sostituzione per i veicoli in circolazione, gli Stati membri:
- cessano di considerare validi i certificati di conformità che accompagnano i veicoli nuovi o i motori nuovi conformi alla direttiva 70/156/CEE ai fini dell'articolo 7, paragrafo 1 della medesima, e
- vietano l'immatricolazione, la vendita, l'immissione in circolazione o l'utilizzazione di veicoli nuovi azionati da un
 motore ad accensione spontanea o a gas e la vendita e l'utilizzazione di motori nuovi ad accensione spontanea o a
 gas,

qualora le emissioni di inquinanti gassosi e di particolato e l'opacità del fumo prodotte dal motore non siano conformi ai valori limite fissati nella riga B1 delle tabelle di cui al punto 6.2.1 dell'allegato I della direttiva 88/77/CEE, modificata dalla presente direttiva.

- 6. A decorrere dal 1º ottobre 2008, gli Stati membri:
- non possono più rilasciare un'omologazione CE o emettere il documento di cui all'articolo 10, paragrafo 1, ultimo trattino, della direttiva 70/156/CEE e
- rifiutano l'omologazione di portata nazionale

per i tipi di motori ad accensione spontanea o a gas e i tipi di veicoli azionati da un motore ad accensione spontanea o da un motore a gas nel caso in cui le emissioni di inquinanti gassosi e di particolato e l'opacità del fumo prodotte dal motore non siano conformi ai valori limite fissati nella riga B2 delle tabelle di cui al punto 6.2.1 dell'allegato I della direttiva 88/77/CEE, modificata dalla presente direttiva.

- 7. A decorrere dal 1º ottobre 2009, ad eccezione dei veicoli e dei motori destinati all'esportazione in paesi terzi e dei motori di sostituzione per i veicoli in circolazione, gli Stati membri:
- cessano di considerare validi i certificati di conformità che accompagnano i veicoli nuovi o i motori nuovi conformi alla direttiva 70/156/CEE ai fini dell'articolo 7, paragrafo 1 della medesima, e
- vietano l'immatricolazione, la vendita, l'immissione in circolazione o l'utilizzazione di veicoli nuovi azionati da un motore ad accensione spontanea o a gas e la vendita e l'utilizzazione di motori nuovi ad accensione spontanea o a gas,

qualora le emissioni di inquinanti gassosi e di particolato e l'opacità del fumo prodotte dal motore non siano conformi ai valori limite fissati nella riga B2 delle tabelle di cui al punto 6.2.1 dell'allegato I della direttiva 88/77/CEE, modificata dalla presente direttiva.

8. A norma del paragrafo 1, il motore che soddisfa i requisiti pertinenti degli allegati della direttiva 88/77/CEE, modificata dalla presente direttiva, e rispetta i valori limite fissati nella riga C delle tabelle di cui al punto 6.2.1 dell'allegato I della direttiva 88/77/CEE, modificata dalla presente direttiva, è considerato conforme ai requisiti dei paragrafi da 2 a 7.

Articolo 3

1. Gli Stati membri possono prevedere incentivi fiscali soltanto per i veicoli a motore conformi alla direttiva 88/77/CEE, modificata dalla presente direttiva. Tali incentivi devono essere conformi alle disposizioni del trattato e soddisfare le condizioni di cui ai punti a) e b) seguenti:

a) Riguardare tutti i veicoli nuovi messi in vendita sul mercato di uno Stato membro e che siano conformi in anticipo ai valori limite fissati nella riga A delle tabelle di cui al punto 6.2.1 dell'allegato I della direttiva 88/77/CEE, modificata dalla presente direttiva e, in seguito, a decorrere dal 1º ottobre 2000, i valori limite fissati nelle righe B1 o B2 di dette tabelle:

IT

cessare al momento dell'applicazione cogente dei valori limite di emissione stabiliti all'articolo 2, paragrafo 3, per i veicoli nuovi, o alle date d'applicazione cogente dei valori limite di emissione stabiliti alle righe B1 o B2 delle tabelle di cui al punto 6.2.1 dell'allegato I della direttiva 88/77/CEE, modificata dalla presente direttiva;

- b) riguardare tutti i veicoli nuovi messi in vendita sul mercato di uno Stato membro e che siano conformi ai valori limite facoltativi fissati nella riga C delle tabelle di cui al punto 6.2.1 dell'allegato I della direttiva 88/77/CEE, modificata dalla presente direttiva.
- 2. Non superare, per ciascun tipo di veicolo, il costo supplementare delle soluzioni tecniche introdotte per garantire il rispetto dei valori limite fissati nella riga A o nelle righe B1 o B2 ovvero dei valori limite fissati nella riga C delle tabelle di cui al punto 6.2.1 dell'allegato I della direttiva 88/77/CEE, modificata dalla presente direttiva, e della loro installazione sul veicolo.
- 3. La Commissione viene informata tempestivamente dei progetti intesi ad istituire o a modificare gli incentivi fiscali di cui al presente articolo in modo da poter presentare le proprie osservazioni.

Articolo 4

A decorrere dal 1º ottobre 2005 i nuovi tipi di veicoli e dal 1º ottobre 2006 tutti i tipi di veicoli vengono dotati di un sistema diagnostico di bordo (OBD) o di un sistema di misurazione di bordo (OBM) per il controllo delle emissioni gassose in condizioni di esercizio.

La Commissione propone al Parlamento europeo e al Consiglio la regolamentazione del caso. Quest'ultima dovrà prevedere:

- l'accesso illimitato e normalizzato al sistema OBD a fini di ispezione, diagnosi, manutenzione e riparazione;
- la normalizzazione dei codici di errore;
- la compatibilità tra ricambi in modo da facilitare la riparazione, la sostituzione e la manutenzione dei veicoli dotati del sistema OBD.

Articolo 5

A decorrere dal 1º ottobre 2005 per i nuovi tipi ed a decorrere dal 1º ottobre 2006 per tutti i tipi, i certificati di omologazione rilasciati ai veicoli e ai motori dovranno confermare anche la funzionalità dei dispositivi antinquinamento per tutta la normale durata di vita del veicolo o del motore.

La Commissione esaminerà le differenze riscontrate nella normale durata di vita delle varie categorie di veicoli pesanti e, se del caso, proporrà opportune prescrizioni in materia di durata specifiche per ciascuna categoria.

Articolo 6

A decorrere dal 1º ottobre 2005 per i nuovi tipi ed a decorrere dal 1º ottobre 2006 per tutti i tipi, i certificati di omologazione rilasciati ai veicoli saranno condizionati anche alla conferma della funzionalità dei dispositivi antinquinamento per tutta la normale durata di vita del veicolo in condizioni di esercizio normali (conformità dei veicoli in circolazione sottoposti a corretta manutenzione e correttamente utilizzati).

Questa disposizione deve essere confermata e integrata dalla Commissione a norma dell'articolo 7.

Articolo 7

La Commissione presenta una proposta al Parlamento europeo e al Consiglio che confermi o integri la presente direttiva entro dodici mesi dalla sua data di entrata in vigore o entro il 31 dicembre 2000, il termine che scade per primo.

La proposta terrà conto di quanto segue:

- la procedura di revisione di cui all'articolo 3 della direttiva 98/69/CE del Parlamento europeo e del Consiglio (¹) e all'articolo 9 della direttiva 98/70/CE del Parlamento europeo e del Consiglio (²);
- lo sviluppo della tecnologia di controllo delle emissioni prodotte dai motori ad accensione spontanea e dai motori a gas inclusa la tecnologia post-trattamento, tenendo conto della sua interdipendenza con la qualità del combustibile;
- la necessità di migliorare l'esattezza e la ripetibilità delle attuali procedure di misurazione e campionamento per livelli molto bassi di particolato emesso dai motori;

⁽¹⁾ GU L 350 del 28.12.1998, pag. 1.

⁽²⁾ GU L 350 del 28.12.1998, pag. 58.

 lo sviluppo di un ciclo di prova armonizzato su scala mondiale per le prove di omologazione.

IT

La proposta contemplerà:

- prescrizioni per l'introduzione di un sistema OBD per i veicoli pesanti a decorrere dal 1º ottobre 2005 a norma dell'articolo 4 della presente direttiva e, analogamente, della direttiva 98/69/CE sulla riduzione delle emissioni gassose degli autoveicoli e dei veicoli commerciali leggeri;
- prescrizioni in materia di durata dei dispositivi antinquinamento a decorrere dal 1º ottobre 2005 a norma dell'articolo 5 della presente direttiva;
- prescrizioni per la conformità dei veicoli in circolazione nella procedura di omologazione per i veicoli a decorrere dal 1º ottobre 2005 a norma dell'articolo 6 della presente direttiva tenendo conto della specificità delle prove effettuate sui motori di questi veicoli e delle informazioni specifiche ottenute dai sistemi OBD secondo un approccio costi/efficacia;
- limiti adeguati per inquinanti attualmente non soggetti a regolamentazioni in seguito alla diffusa introduzione di nuovi combustibili alternativi.

Entro il 31 dicembre 2001 la Commissione riferirà in merito all'andamento dei negoziati relativi ad un ciclo di prova armonizzato su scala mondiale.

Entro il 30 giugno 2002 la Commissione presenterà al Parlamento europeo e al Consiglio una relazione sui requisiti di funzionamento di un sistema OBM. Sulla base di tale relazione la Commissione presenterà una proposta di misure che entreranno in vigore entro il 1º gennaio 2005 e includeranno specifiche tecniche e relativi allegati al fine di prevedere l'omologazione di sistemi OBM che garantiscano almeno livelli di controllo equivalenti a quelli dei sistemi OBD e che siano con essi compatibili.

Entro il 31 dicembre 2002 la Commissione esaminerà la tecnologia disponibile nell'intento di confermare la norma obbligatoria riguardante i NO_x per il 2008 in una relazione da sottoporre al Parlamento europeo e al Consiglio, corredata, se del caso, di appropriate proposte.

Articolo 8

1. Gli Stati membri mettono in vigore le disposizioni legislative, regolamentari e amministrative necessarie per conformarsi alla presente direttiva anteriormente al 1º luglio 2000. Essi ne informano immediatamente la Commissione.

Quando gli Stati membri adottano tali disposizioni, queste contengono un riferimento alla presente direttiva o sono corredate di un siffatto riferimento all'atto della pubblicazione ufficiale. Le modalità del riferimento sono decise dagli Stati membri.

2. Gli Stati membri comunicano alla Commissione il testo delle disposizioni essenziali di diritto interno che essi adottano nel settore disciplinato dalla presente direttiva.

Articolo 9

La presente direttiva entra in vigore il giorno della pubblicazione nella Gazzetta ufficiale delle Comunità europee.

Articolo 10

Gli Stati membri sono destinatari della presente direttiva.

Fatto a Bruxelles, addì 13 dicembre 1999.

Per il Parlamento europeo Per il Consiglio
II Presidente II Presidente
N. FONTAINE S. HASSI

ALLEGATO

INDICE GENERALE

ALLEGATO I	AMBITO DI APPLICAZIONE, DEFINIZIONI E ABBREVIAZIONI, DOMANDA DI OMOLOGAZIONE CE, SPECIFICHE E PROVE E CONFORMITÀ DELLA PRODUZIONE				
1. Ambito di	applicazione				
2. Definizion	Definizioni e abbreviazioni				
3. Domanda	di omologazione CE				
4. Omologaz	ione CE				
5. Marcature	del motore				
6. Specifiche	e prove				
7. Installazion	ne sul veicolo				
8. Famiglia di	motori				
9. Conformit	à della produzione				
Appendice 1	Procedimento per la prova di conformità della produzione quando la deviazione standard è sod- disfacente				
Appendice 2	Procedimento per la prova di conformità della produzione quando la deviazione standard è insoddisfacente o non disponibile				
Appendice 3	Procedimento per la prova di conformità della produzione su richiesta del costruttore				
ALLEGATO II	SCHEDA INFORMATIVA				
Appendice 1	Caratteristiche fondamentali del motore (capostipite) e informazioni relative alla conduzione della prova				
1. Descrizion	e del motore				
2. Misure cor	tro l'inquinamento atmosferico				
3. Alimentazi	one del combustibile				
4. Distribuzio	one				
5. Sistema di	accensione (solo motori con accensione a scintilla)				
6. Dispositivi	azionati dal motore				
7. Informazio	ni addizionali sulle condizioni di prova				
8. Prestazioni	del motore				
Appendice 2	Caratteristiche essenziali della famiglia dei motori				
1. Parametri	comuni				
2. Elenco dell	a famiglia di motori				
Appendice 3	Caratteristiche fondamentali dei tipi di motore appartenenti ad una famiglia				
1. Descrizion	e dei motori				
2. Misure cor	ntro l'inquinamento atmosferico				
3. Alimentazi	one del combustibile				
4. Distribuzio	Distribuzione				
5. Sistema di	accensione (solo motori con accensione a scintilla)				
Appendice 4	Caratteristiche delle parti del veicolo correlate al motore				

		Pagin
AL	LEGATO III PROCEDIMENTO DI PROVA	5
1.	Introduzione	5
2.	Condizioni di prova	5
Аp	pendice 1 Cicli di prova ESC e ELR	5
1.	Regolazione del motore e del banco dinamometrico	5
2.	Esecuzione della prova ESC	5
3.	Esecuzione della prova ELR	5
4.	Calcolo delle emissioni gassose	6
5.	Calcolo dell'emissione di particolato (solo motori diesel)	6
6.	Calcolo dei valori di fumo	6
Аp	pendice 2 Ciclo di prova ETC	6
1.	Procedimento di mappatura del motore	6
2.	Generazione del ciclo di prova di riferimento	6
3.	Esecuzione della prova delle emissioni	6
4.	Calcolo delle emissioni gassose	7
5.	Calcolo delle emissioni di particolato	7
Аp	pendice 3 Tabella dinamometro motore ETC	7
Аp	pendice 4 Procedure di misurazione e campionamento	8
1.	Introduzione	8
2.	Dinamometro e apparecchiature della cella di prova	8
3.	Determinazione dei componenti gassosi	91
4.	Determinazione del particolato	9:
5.	Determinazione del fumo	9
Аp	pendice 5 Procedimento di taratura	9
1.	Taratura degli strumenti analitici	9
2.	Taratura del sistema CVS	10
3.	Taratura del sistema per la determinazione del particolato	10
4.	Taratura dell'apparecchiatura di misura del fumo	10
AL	LEGATO IV CARATTERISTICHE TECNICHE DEL COMBUSTIBILE DI RIFERIMENTO PRESCRITTO PER PROVE DI OMOLOGAZIONE E PER VERIFICARE LA CONFORMITÀ DELLA PRODUZIONE	10
1.	Combustibile diesel	10
2.	Gas naturale (GN)	10
3.	Gas di petrolio liquefatto (GPL)	10
AL	LEGATO V SISTEMI ANALITICI DI CAMPIONAMENTO	10
1.	Determinazione delle emissioni gassose	10
2.	Diluizione del gas di scarico e determinazione del particolato	11
3.	Determinazione del fumo	13
AL	LEGATO VI CERTIFICATO DI OMOLOGAZIONE CE	13
AI.	LEGATO VII ESEMPIO DI PROCEDIMENTO DI CALCOLO	13

INDICE DELLE FIGURE

Figura 1	Definizioni specifiche dei parametri di prova
Figura 2	Schema della prova di conformità della produzione
Figura 3	Sequenza della prova ELR
Figura 4	Interpolazione del punto di controllo NO _x
Figura 5	Tabella dinamometrica ETC
Figura 6	Schema del dispositivo di determinazione dell'efficienza del convertitore di NO ₂
Figura 7	Schema di flusso del sistema di analisi dei gas grezzi di scarico per CO, CO ₂ , NO _x , HC solo ESC .
Figura 8	Schema di flusso del sistema di analisi dei gas di scarico diluiti per ${\rm CO}$, ${\rm CO}_2$, ${\rm NO}_x$, ${\rm HC}$, ${\rm ETC}$, facoltativo per ${\rm ESC}$
Figura 9	Schema di flusso per l'analisi del metano (metodo GC)
Figura 10	Schema di flusso per l'analisi del metano con il dispositivo di eliminazione degli idrocarburi diversi dal metano (NMC)
Figura 11	Sistema di diluizione a flusso parziale con sonda isocinetica e campionamento frazionario (controllo tramite SB)
Figura 12	Sistema di diluizione a flusso parziale con sonda isocinetica e campionamento frazionario (controllo tramite PB)
Figura 13	Sistema di diluizione a flusso parziale con misura della concentrazione di ${\rm CO_2}$ o ${\rm NO_x}$ e campionamento frazionario
Figura 14	Sistema di diluizione a flusso parziale con misura della concentrazione di CO ₂ , bilancio del carbonio e campionamento totale
Figura 15	Sistema di diluizione a flusso parziale con Venturi singolo, misura della concentrazione e campio- namento frazionario
Figura 16	Sistema di diluizione a flusso parziale con Venturi gemelli o orifici gemelli, misura della concentrazione e campionamento frazionario
Figura 17	Sistema di diluizione a flusso parziale con divisione a tubi multipli, misura della concentrazione e campionamento frazionario
Figura 18	Sistema di diluizione a flusso parziale con controllo di flusso e campionamento totale
Figura 19	Sistema di diluizione a flusso parziale con controllo del flusso e campionamento frazionario
Figura 20	Sistema di diluizione a flusso pieno
Figura 21	Sistema di campionamento del particolato
Figura 22	Sistema di doppia diluizione (solo sistema a flusso pieno)
Figura 23	Opacimetro a flusso totale pieno
Figura 24	Opacimetro a flusso parziale
	INDICE DELLE TABELLE
Tabella 1	Valori limite — prove ESC e ELR
Tabella 2	Valori limite — prova ETC
Tabella 3	Limiti di accettazione e di rifiuto del piano di campionamento dell'appendice
Tabella 4	Limiti di accettazione e di rifiuto del piano di campionamento dell'appendice
Tabella 5	Limiti di accettazione e di rifiuto del piano di campionamento dell'appendice
Tabella 6	Tolleranze della linea di regressione
Tabella 7	Cancellazioni di punti dall'analisi di regressione ammesse
Tabella 8	Accuratezza degli strumenti di misura
Tabella 9	Carichi sul filtro raccomandati

AMBITO DI APPLICAZIONE, DEFINIZIONI E ABBREVIAZIONI, DOMANDA DI OMOLOGAZIONE CE, SPECIFICHE E PROVE E CONFORMITÀ DELLA PRODUZIONE

1. AMBITO DI APPLICAZIONE

IT

La presente direttiva riguarda gli inquinanti gassosi e il particolato emessi da tutti i veicoli azionati da motori ad accensione spontanea e gli inquinanti gassosi emessi da tutti i veicoli azionati da motori ad accensione comandata alimentati a gas naturale o GPL, e i motori ad accensione spontanea e ad accensione comandata specificati nell'articolo 1, esclusi i veicoli di categoria N_1 , N_2 e M_2 omologati in base alla direttiva 70/220/CEE del Consiglio (¹), modificata da ultimo dalla direttiva 98/77/CE della Commissione (²).

2. DEFINIZIONI E ABBREVIAZIONI

Ai fini della presente direttiva si intende per:

- 2.1. *«ciclo di prova»* una sequenza di punti di prova aventi ciascuno una velocità e una coppia definite che il motore deve percorrere in condizioni operative stazionarie (prova ESC) o transienti (prove ETC, ELR);
- 2.2. «omologazione di un motore (di una famiglia di motori)» l'omologazione di un tipo di motore (famiglia di motori) relativamente al livello di emissione di inquinanti gassosi e di particolato;
- 2.3. «motore diesel» un motore che funziona secondo il principio di accensione spontanea;

«motore a gas» un motore alimentato con gas naturale (GN) o gas di petrolio liquefatto (GPL);

- 2.4. «tipo di motore» una categoria di motori che non differiscono per quanto riguarda gli aspetti essenziali delle caratteristiche del motore definiti nell'allegato II della presente direttiva;
- 2.5. *«famiglia di motori»* un raggruppamento di motori eseguito dal costruttore che, in base alle loro caratteristiche di progetto definite nell'allegato II, appendice 2 della presente direttiva, hanno caratteristiche di emissione allo scarico simili; tutti i membri della famiglia devono essere conformi ai valori limite di emissione applicabili;
- 2.6. *«motore capostipite»* un motore scelto all'interno della famiglia di motori in modo che le sue caratteristiche di emissione siano rappresentative di tali famiglie di motori;
- 2.7. «inquinanti gassosi» monossido di carbonio, idrocarburi (supponendo un rapporto CH_{1.85} per il combustibile diesel, CH_{2.525} per il GPL e CH_{2.93} per il GN (NMHC)), metano (supponendo un rapporto CH₄ per il GN) e ossidi di azoto, questi ultimi espressi in biossido d'azoto (NO₂) equivalente;

«particolato» qualsiasi materiale raccolto su un materiale filtrante specificato dopo diluizione dello scarico con aria filtrata e pulita in modo che la temperatura non superi i 325 K (52°C);

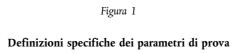
2.8. *«fumo»* particelle sospese nella corrente di scarico di un motore diesel che assorbono, riflettono o rifrangono la luce;

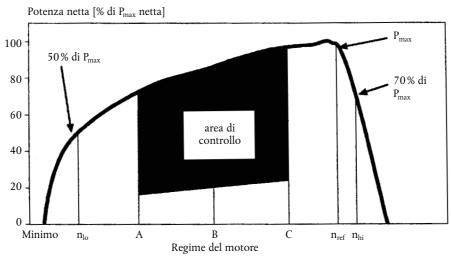
⁽¹⁾ GU L 76 del 6.4.1970, pag. 1.

⁽²⁾ GU L 286 del 23.10.1998, pag. 1.

- 2.9. «potenza netta» la potenza in kW CE ottenuta sul banco di prova all'estremità dell'albero a gomiti, o suo equivalente, misurata secondo il metodo CE di misurazione della potenza definito nella direttiva 80/1269/CEE della Commissione (¹) modificata da ultimo dalla direttiva 97/21/CE (²);
- 2.10. «potenza massima (P_{max}) dichiarata» la potenza massima in kW CE (potenza netta) dichiarata dal costruttore nella domanda di omologazione;
- 2.11. «carico percentuale» la frazione della coppia massima disponibile ad una data velocità del motore;
- 2.12. *«prova ESC»* un ciclo di prova costituito da 13 modi a regime dinamico stazionario da applicarsi secondo il punto 6.2 del presente allegato;
- 2.13. «prova ELR» un ciclo di prova costituito da una sequenza di aumenti di carico a gradino a velocità costanti del motore da applicarsi secondo il punto 6.2 del presente allegato;
- 2.14. «prova ETC» un ciclo di prova costituito da 1 800 modi in regime transitorio, normalizzati secondo per secondo da applicarsi secondo il punto 6.2 del presente allegato;
- 2.15. «intervallo dei regimi di funzionamento del motore» l'intervallo di velocità del motore più frequentemente utilizzato durante il funzionamento del motore nell'impiego reale, che è compreso tra il basso e l'alto regime, come definito nell'allegato III della presente direttiva;
- 2.16. «basso regime (n_{loo}) » la più bassa velocità del motore alla quale si ottiene il 50% della potenza massima dichiarata:
- 2.17. "alto regime (n_{hi}) " la più alta velocità del motore alla quale si ottiene il 70% della potenza massima dichiarata:
- 2.18. «regime A, B e C del motore» le velocità di prova all'interno dell'intervallo di regimi di funzionamento del motore da usarsi per la prova ESC e per la prova ELR, come definito nell'allegato III, appendice 1 della presente direttiva;
- 2.19. «area di controllo» l'area compresa tra i regimi A e C del motore e tra il 25 e il 100% di carico;
- 2.20. «regime di riferimento (n_{ref}) » la velocità del motore da impiegare come valore 100% per denormalizzare i valori della velocità istantanea prescritti in termini percentuali della prova ETC, come definito nell'allegato III, appendice 2 della presente direttiva;
- 2.21. *«opacimetro»* uno strumento progettato per misurare l'opacità di particelle di fumo mediante il principio di estinzione della luce;
- 2.22. «gruppo di gas GN» uno dei gruppi H o L definiti nella norma europea EN 437 del novembre 1993;
- 2.23. *«autoadattabilità»* qualsiasi dispositivo del motore che permette di mantenere costante il rapporto aria/combustibile:
- 2.24. *«ritaratura»* una regolazione fine di un motore a GN allo scopo di fornire le stesse prestazioni (potenza, consumo di combustibile) con gas naturale di un gruppo differente;
- 2.25. «indice di Wobbe (inferiore Wl; o superiore Wu)» il rapporto tra il corrispondente potere calorifico di un gas per unità di volume e la radice quadrata della sua densità relativa nelle stesse condizioni di riferimento:

$$\mathrm{W} = \mathrm{H}_{\scriptscriptstyle \mathrm{gas}} imes \sqrt{arrho_{\scriptscriptstyle \mathrm{air}}/arrho_{\scriptscriptstyle \mathrm{gas}}}$$


⁽¹⁾ GU L 375 del 31.12.1980, pag. 46.


⁽²⁾ GU L 125 del 16.5.1997, pag. 31.

- 2.26. *«Fattore di spostamento* λ (S_{λ})*»* un'espressione che descrive la flessibilità richiesta ad un sistema di gestione del motore relativamente ad un cambiamento del rapporto di eccesso d'aria λ se il motore è alimentato con una composizione di gas diversa dal metano puro (per il calcolo di S_{λ} vedi allegato VII).
- 2.27. «veicolo ecologico migliorato (EEV)», un tipo di veicolo azionato da un motore conforme ai valori limite di emissione facoltativi indicati nella riga C delle tabelle di cui al punto 6.2.1 del presente allegato.
- 2.28. «impianto di manipolazione (defeat device)» ogni elemento di progettazione del motore o del veicolo che misuri o rilevi la velocità del veicolo, il regime del motore, la marcia innestata, la temperatura, la pressione di aspirazione o ogni altro parametro al fine di attivare, modulare, ritardare o disattivare il funzionamento di un qualsiasi componente del sistema di controllo delle emissioni, in modo da diminuire l'efficacia del sistema di controllo delle emissioni in condizioni che si verificano durante la normale utilizzazione del veicolo.

Detto elemento non è considerato un impianto di manipolazione se:

- la necessità di un simile impianto è giustificata ai fini della protezione temporanea del motore da condizioni di funzionamento discontinue che possono causare danni o guasti e non è applicabile alcun altro dispositivo avente lo stesso scopo che non diminuisca l'efficacia del sistema di controllo delle emissioni.
- l'impianto funziona esclusivamente ove necessario per l'avviamento e/o il preriscaldamento del motore e non è applicabile alcun altro dispositivo avente lo stesso scopo che non diminuisca l'efficacia del sistema di controllo delle emissioni.

2.29. Simboli e abbreviazioni

2.29.1. Simboli dei parametri di prova

Simbolo	Unità	Definizione	
$\overline{A_p}$	m ²	Area della sezione trasversale della sonda di campionamento isocinetico	
A_T	m ²	Area della sezione traversale del tubo di scappamento	
CE_E	_	Efficienza etano	
CE_M	_	Efficienza metano	
C1	_	Idrocarburo carbonio 1 equivalente	

Simbolo	Unità	Definizione	
conc	ppm/vol%	Pedice indicante la concentrazione	
D_0	m³/s	Intercetta della funzione di taratura della PDP	
DF	_	Fattore di diluizione	
D	_	Costante della funzione di Bessel	
E	_	Costante della funzione di Bessel	
E_Z	g/kWh	Emissione di NO _x interpolata del punto di controllo	
f_a	_	Fattore atmosferico del laboratorio	
f_c	s ⁻¹	Frequenza di intercettazione del filtro di Bessel	
F_{FH}	_	Fattore specifico per il combustibile per il calcolo della concentrazione su umido della concentrazione su secco	
F_S	_	Fattore stechiometrico	
G_{AIRW}	kg/h	Portata massica di aria di ammissione su umido	
G_{AIRD}	kg/h	Portata massica di aria di ammissione su secco	
$G_{ m DILW}$	kg/h	Portata massica di aria di diluizione su umido	
G_{EDFW}	kg/h	Portata massica di gas di scarico diluito equivalente su umido	
$G_{\rm EXHW}$	kg/h	Portata massica di gas di scarico su umido	
G_{FUEL}	kg/h	Portata massica di combustibile	
G_{TOTW}	kg/h	Portata massica di gas di scarico diluito su umido	
Н	MJ/m ³	Potere calorifico	
H_{REF}	g/kg	Valore di riferimento dell'umidità assoluta (10,71 g/kg)	
H _a	g/kg	Umidità assoluta dell'aria di ammissione	
H_d	g/kg	Umidità assoluta dell'aria di diluizione	
HTCRAT	mol/mol	Rapporto idrogeno su carbonio	
i	_	Pedice indicante una singola modalità	
K	_	Costante di Bessel	
k	m ⁻¹	Coefficiente di assorbimento della luce	
$K_{H,D}$	_	Fattore di correzione dell'umidità per NO _x per motori diesel	
$K_{H,G}$	_	Fattore di correzione dell'umidità per NO _x per motori a gas	
K_V		Funzione di taratura del CFV	
$K_{W,a}$	_	Fattore di correzione da secco a umido per l'aria di ammissione	

Simbolo	Unità	Definizione	
$K_{W,d}$	_	Fattore di correzione da secco a umido per l'aria di diluizione	
$K_{W,e}$	_	Fattore di correzione da secco a umido per il gas di scarico diluito	
$K_{W,r}$	_	Fattore di correzione da secco a umido per il gas di scarico non diluito	
L	%	Coppia percentuale riferita alla coppia massima per il regime di prova del motore	
L _a	m	Lunghezza efficace del cammino ottico	
m		Coefficiente angolare della funzione di taratura della PDP	
mass	g/h o g	Pedice indicante la portata massica o il flusso massico delle emissioni	
M_{DIL}	kg	Massa del campione di aria di diluizione passata attraverso i filtri di cam- pionamento del particolato	
M_{d}	mg	Massa del campione di particolato raccolto dall'aria di diluizione	
$M_{\rm f}$	mg	Massa del campione di particolato raccolto	
$M_{f,p}$	mg	Massa del campione di particolato raccolto sul filtro principale	
$M_{f,b}$	mg	Massa del campione di particolato raccolto sul filtro di sicurezza	
M _{sam}	kg	Massa del campione di scarico diluito passato attraverso i filtri di campionamento del particolato	
M_{SAM}	kg	Massa dell'aria di diluizione secondaria	
M_{TOTW}	kg	Massa CVS totale su tutto il ciclo, su umido	
$M_{TOTW,i}$	kg	Massa CVS istantanea su umido	
N	%	Opacità	
N_P	_	Giri totali di PDP su tutto il ciclo	
$N_{P,i}$	_	Giri totali di PDP nel corso di un intervallo di tempo	
n	min ⁻¹	Velocità del motore	
N_p	s ⁻¹	Velocità PDP	
n_{hi}	min ⁻¹	Velocità alta del motore	
n_{lo}	min ⁻¹	Velocità bassa del motore	
n_{ref}	min ⁻¹	Velocità di riferimento nel motore per la prova ETC	
P _a	kPa	Tensione di vapore di saturazione dell'aria di ammissione del motore	
P_A	kPa	Pressione assoluta	
P_{B}	kPa	Pressione atmosferica totale	

Simbolo	Unità	Definizione	
P_{d}	kPa	Tensione di vapore di saturazione dell'aria di diluizione	
P_s	kPa	Pressione atmosferica a secco	
P_1	kPa	Depressione all'aspirazione della pompa	
P(a)	kW	Potenza assorbita dai dispositivi applicati per la prova	
P(b)	kW	Potenza assorbita dai dispositivi rimossi per la prova	
P(n)	kW	Potenza netta non corretta	
P(m)	kW	Potenza misurata al banco prova	
Ω	_	Costante di Bessel	
Q_s	m³/s	Portata volumica CVS	
q	_	Rapporto di diluizione	
r	_	Rapporto tra l'area della sezione trasversale della sonda isocinetica e quella del tubo di scarico	
R_a	%	Umidità relativa dell'aria di ammissione	
R_d	%	Umidità relativa dell'aria di diluizione	
$R_{\rm f}$	_	Fattore di risposta del FID	
ρ	kg/m³	Densità	
S	kW	Regolazione del banco dinamometrico	
S_{i}	m ⁻¹	Indice di fumo istantaneo	
S_{λ}	_	Fattore di spostamento λ	
T	K	Temperatura assoluta	
T_a	K	Temperatura assoluta dell'aria di ammissione	
t	S	Tempo di maturazione	
t _e	s	Tempo di risposta elettrica	
t_{f}	s	Tempo di risposta del filtro per la funzione di Bessel	
t_p	S	Tempo di risposta fisica	
Δt	S	Intervallo di tempo tra successivi dati di fumo (= 1/frequenza di campio- namento)	
Δt_{i}	s	Intervallo di tempo per il flusso istantaneo nel CFV	
τ	%	Trasmittanza del fumo	
V_0	m³/rev	Portata volumica della PDP nelle condizioni effettive	
W	_	Indice di Wobbe	
W _{act}	kWh	Lavoro nel ciclo effettivo di ETC	

Simbolo	Unità	Definizione	
W _{ref}	kWh	Lavoro nel ciclo di riferimento di ETC	
WF	_	Fattore di ponderazione	
WF_E	_	Fattore di ponderazione effettivo	
X_0	m³/rev	Funzione di taratura della portata volumica della PDP	
Y_{i}	m ⁻¹	Indice di fumo medio di Bessel misurato su 1 s.	

2.29.2. Simboli dei componenti chimici

Metano C_2H_6 Etano C_3H_8 Propano CO

Monossido di carbonio DOP

Diottiftalato Biossido di carbonio CO_2 Idrocarburi

HC **NMHC** Idrocarburi diversi dal metano

 NO_x Ossidi d'azoto NO Ossido nitrico NO_2 Biossido d'azoto PT Particolato

2.29.3. Abbreviazioni

CFV

Venturi a portata critica CLD Rivelatore a chemiluminescenza ELR Prova europea di risposta al carico **ESC** Ciclo europeo a stato stazionario ETC Ciclo transiente europeo FID Rivelatore a ionizzazione di fiamma GC Gascromatografo HCLD Rivelatore a chemiluminescenza riscaldato Rivelatore a ionizzazione di fiamma riscaldato **HFID** GPL Gas di petrolio liquefatto

NDIR Analizzatore a infrarossi non dispersivo

GNGas naturale

NMC Dispositivo di eliminazione degli NMHC

DOMANDA DI OMOLOGAZIONE CE 3.

3.1 Domanda di omologazione CE per un tipo di motore o una famiglia di motori come entità tec-

- 3.1.1. La domanda di omologazione di un tipo di motore o di una famiglia di motori relativamente al livello dell'emissione di inquinanti gassosi e di particolato per motori diesel e relativamente al livello di emissione di inquinanti gassosi per motori a gas deve essere presentata dal costruttore del motore o da un suo mandatario.
- 3.1.2. La domanda deve essere accompagnata dai documenti, in triplice copia, indicati nel seguito e dai seguenti dettagli:
- 3.1.2.1. Una descrizione del tipo di motore o della famiglia di motori, se applicabile, comprendente i dati di cui all'allegato II della presente direttiva conformi alle prescrizioni degli articoli 3 e 4 della direttiva 70/156/ CEE.
- 3.1.3. Al servizio tecnico responsabile dell'esecuzione delle prove di omologazione definite nel punto 6 deve essere presentato un motore conforme alle caratteristiche del «tipo di motore» o del «motore capostipite» descritto nell'allegato II.

3.2. Domanda di omologazione CE per un tipo di veicolo relativamente al suo motore

- 3.2.1. La domanda di omologazione di un veicolo per quanto concerne l'emissione di inquinanti gassosi e di particolato prodotti dal suo motore o famiglia di motori diesel e per quanto concerne il livello dell'emissione di inquinanti gassosi prodotti dal suo motore o famiglia di motori a gas deve essere presentata dal costruttore del veicolo o da un suo mandatario.
- 3.2.2. La domanda deve essere accompagnata dai documenti, in triplice copia, indicati nel seguito e dai seguenti dettagli:
- 3.2.2.1. una descrizione del tipo di veicolo, delle parti del veicolo correlate al motore e del tipo di motore o della famiglia di motori, se applicabile, comprendente i dati di cui all'allegato II, insieme con la documentazione richiesta in applicazione dell'articolo 3 della direttiva 70/156/CEE.

3.3. Domanda di omologazione CE per un tipo di veicolo con un motore omologato

- 3.3.1. La domanda di omologazione di un veicolo per quanto concerne l'emissione di inquinanti gassosi e di particolato prodotti dal suo motore o famiglia di motori diesel omologato e per quanto concerne il livello dell'emissione di inquinanti gassosi prodotti dal suo motore o famiglia di motori a gas omologato deve essere presentata dal costruttore del veicolo o da un suo mandatario.
- 3.3.2. La domanda deve essere accompagnata dai documenti, in triplice copia, indicati nel seguito e dai seguenti dettagli:
- 3.3.2.1. una descrizione del tipo di veicolo e delle parti del veicolo correlate al motore compresi i dati di cui all'allegato II, se applicabile, e una copia della scheda di omologazione CE (allegato VI) per il motore o la famiglia di motori, se applicabile, come entità tecnica installata nel tipo di veicolo, insieme con la documentazione richiesta in applicazione dell'articolo 3 della direttiva 70/156/CEE.

4. OMOLOGAZIONE CE

4.1. Concessione di un'omologazione CE per combustibile universale

Per la concessione di un'omologazione CE per combustibili universali devono essere soddisfatti i seguenti requisiti:

- 4.1.1. Nel caso di combustibile diesel il motore capostipite è conforme ai requisiti della presente direttiva relativi al carburante di riferimento specificato nell'allegato IV.
- 4.1.2. Nel caso del gas naturale si deve dimostrare che il motore capostipite è in grado di adattarsi a qualsiasi composizione di combustibile che si possa trovare sul mercato. Come gas naturale vi sono in generale due tipi di combustibile, combustibile ad elevato potere calorifico (gas H) e combustibile a basso potere calorifico (gas L), ma con una significativa dispersione entro tutti e due gli intervalli; essi differiscono in modo significativo per quanto riguarda il contenuto energetico espresso dall'indice di Wobbe e per quanto riguarda il loro fattore di spostamento λ (S_{λ}). Le formule per il calcolo dell'indice di Wobbe e di S_{λ} sono fornite ai punti 2.25 e 2.26. La composizione dei combustibili di riferimento riflette le variazioni di tali parametri.

Il motore capostipite deve rispettare i requisiti della presente direttiva con i combustibili di riferimento G20 e G25, quali specificati nell'allegato IV, senza alcuna regolazione di adeguamento al combustibile tra le due prove. Tuttavia, dopo il cambio del combustibile è ammesso un periodo di adattamento su un ciclo ETC senza misure. Prima della prova, il motore capostipite verrà rodato con la procedura indicata al paragrafo 3 dell'appendice 2 dell'allegato III.

4.1.3. Nel caso di un motore alimentato a gas naturale autoadattabile al gruppo dei gas H da una parte e al gruppo dei gas L dall'altra parte, e che commuta tra il gruppo H e il gruppo L mediante un commutatore, il motore capostipite deve essere provato con i due combustibili di riferimento pertinenti come specificato nell'allegato IV per ciascun gruppo, in ciascuna posizione del commutatore. I combustibili sono G20 (carburante 1) e G23 (carburante 2) per il gruppo di gas H, G23 (combustibile 1) e G25 (combustibile 2) per il gruppo di gas L. Il motore capostipite deve essere conforme ai requisiti della presente direttiva in entrambe le posizioni del commutatore senza alcuna regolazione di adeguamento al combustibile tra le due prove in ciascuna posizione del commutatore. Tuttavia, dopo il cambio del combustibile è ammesso un periodo di adattamento su un ciclo ETC senza misure. Prima della prova, il motore capostipite verrà rodato con la procedura indicata al paragrafo 3 dell'appendice 2 dell'allegato III.

- 4.1.3.1. A richiesta del costruttore, il motore può venire provato con un terzo combustibile (carburante 3) se il fattore di spostamento λ (S_{λ}) è compreso tra quelli dei combustibili G20 e G25, per esempio quando il combustibile 3 sia un combustibile disponibile sul mercato. I risultati di questa prova possono essere usati come base per la valutazione della conformità della produzione.
- 4.1.3.2. Il rapporto dei risultati delle emissioni «r» viene determinato come segue per ciascun inquinante:
 - r = risultato di emissione sul combustibile di riferimento 2 risultato di emissione sul combustibile di riferimento 1

o

 $r_a = \frac{\text{risultato di emissione sul combustibile di riferimento } 2}{\text{risultato di emissione sul combustibile di riferimento } 3}$

e

- $r_b = \frac{risultato di emissione sul combustibile di riferimento 1}{risultato di emissione sul combustibile di riferimento 3}$
- 4.1.4. Nel caso del GPL il motore capostipite deve dimostrare la sua capacità di adattarsi a qualsiasi composizione del combustibile che si può trovare sul mercato. Nel GPL vi sono variazioni della composizione C₃/C₄. I combustibili di riferimento riflettono queste variazioni. Il motore capostipite deve rispettare i requisiti di emissione con i combustibili di riferimento A e B specificati nell'allegato IV senza alcuna regolazione di adeguamento al combustibile tra le due prove. Tuttavia, dopo il cambio del combustibile è ammesso un periodo di adattamento su un ciclo ETC senza misure. Prima della prova, il motore capostipite verrà rodato con la procedura indicata al paragrafo 3 dell'appendice 2 dell'allegato III.
- 4.1.4.1. I risultati del rapporto delle emissioni «r» viene determinato come segue per ciascun inquinante:
 - $r = \frac{\text{risultato di emissione sul combustibile di riferimento 2}}{\text{risultato di emissione sul combustibile di riferimento 1}}$
- 4.2. Concessione di un'omologazione CE per un gruppo di combustibili limitato

Allo stato attuale della tecnologia non è ancora possibile fabbricare motori a gas naturale a miscela povera autoadattabili. Però questi motori offrono un vantaggio in termini di efficienza e di emissione di CO₂. Se un utilizzatore ha la garanzia di una fornitura di combustibile di composizione uniforme può optare per un motore a miscela povera. Ad un tale motore si dovrà concedere un'omologazione per un gruppo limitato di combustibili. Nell'interesse dell'armonizzazione internazionale, è desiderabile che un campione di tale motore ottenga un'omologazione internazionale. Le varianti per un gruppo limitato di combustibili dovranno allora essere uguali salvo per il contenuto della base di dati della centralina di comando (ECU) del sistema di alimentazione, e per le parti del sistema di alimentazione (come gli ugelli dell'iniettore) che devono essere adattate al differente flusso di combustibile.

Per la concessione dell'omologazione CE per un gruppo limitato di combustibili devono essere soddisfatti i seguenti requisiti:

4.2.1. Omologazione delle emissioni allo scarico di un motore funzionante con gas naturale e predisposto per funzionare o con i gas del gruppo H o con i gas del gruppo L

Il motore capostipite viene provato con i due combustibili di riferimento pertinenti come specificato nell'allegato IV per il gruppo corrispondente. I combustibili sono G20 (combustibile 1) e G23 (combustibile 2) per i gas del gruppo H, G23 (combustibile 1) e G25 (combustibile 2) per i gas del gruppo L. Il motore capostipite deve rispettare i requisiti di emissione senza alcuna regolazione di adeguamento all'alimentazione tra le due prove. Tuttavia, dopo il cambio del combustibile è ammesso un periodo di adattamento su un ciclo ETC senza misure. Prima della prova, il motore capostipite verrà rodato con la procedura indicata al punto 3 dell'appendice 2 dell'allegato III.

4.2.1.1. A richiesta del costruttore, il motore può venire provato con un terzo combustibile (combustibile 3) se il fattore di spostamento λ (S_{λ}) è compreso tra quelli dei combustibili G20 e G23, o G23 e G25 rispettivamente, per esempio quando il combustibile 3 sia un combustibile disponibile sul mercato. I risultati di questa prova possono essere usati come base per la valutazione della conformità della produzione.

- 4.2.1.2. I risultati del rapporto delle emissioni «r» viene determinato come segue per ciascun inquinante:
 - $r = \frac{\text{risultato di emissione sul combustibile di riferimento 2}}{\text{risultato di emissione sul combustibile di riferimento 1}}$

o

 $r_a = \frac{\text{risultato di emissione sul combustibile di riferimento 2}}{\text{risultato di emissione sul combustibile di riferimento 3}}$

e

- $r_b = \frac{risultato\ di\ emissione\ sul\ combustibile\ di\ riferimento\ 1}{risultato\ di\ emissione\ sul\ combustibile\ di\ riferimento\ 3}$
- 4.2.1.3. Al momento della consegna al cliente, il motore deve portare una targhetta (vedi punto 5.1.5) indicante per quale gruppo di gas il motore è omologato.
- 4.2.2. Omologazione delle emissioni allo scarico di un motore funzionante a gas naturale o GPL e predisposto per funzionare con una composizione specifica di combustibile
- 4.2.2.1. Il motore capostipite deve essere conforme ai requisiti di emissione con i combustibili di riferimento G20 e G25, nel caso del gas naturale, o con i combustibili di riferimento A e B nel caso del GPL come specificato nell'allegato IV. Tra una prova e l'altra è ammessa la registrazione del sistema di alimentazione. Questa registrazione consiste in una ritaratura della base di dati di alimentazione, senza alcuna modifica nella strategia di controllo di base o nella struttura fondamentale della base di dati. Se necessario, è permessa la sostituzione di parti direttamente correlate con la portata di combustibile (come gli ugelli dell'iniettore).
- 4.2.2.2. Se il costruttore lo desidera, il motore può venire provato con i combustibili di riferimento G20 e G23, o G23 e G25, nel qual caso l'omologazione è valida solo per i gas del gruppo H o del gruppo L, rispettivamente.
- 4.2.2.3. Alla consegna al cliente, il motore deve portare una targhetta (vedi punto 5.1.5) indicante la composizione di combustibile per la quale il motore è stato tarato.
- 4.3. Omologazione delle emissioni allo scarico di un membro di una famiglia
- 4.3.1. Con l'eccezione del caso citato al punto 4.3.2, l'omologazione di un motore capostipite viene estesa a tutti i membri della famiglia, senza prove ulteriori, per qualsiasi composizione di combustibile che rientri nel gruppo per il quale il motore capostipite è stato omologato (nel caso dei motori descritti al punto 4.2.2) o lo stesso gruppo di combustibili (nel caso dei motori descritti ai punti 4.1 o 4.2) per cui è stato omologato il motore capostipite.
- 4.3.2. Motore di prova secondario

Nel caso di una domanda di omologazione di un motore, o di un veicolo per quanto concerne il suo motore, dove tale motore fa parte di una famiglia di motori, se l'autorità preposta all'omologazione determina che, per quanto concerne il motore capostipite scelto, la domanda presentata non rappresenta pienamente la famiglia di motori definita nell'allegato I, appendice 1, l'autorità preposta all'omologazione può selezionare e provare un motore di riferimento alternativo e, se necessario, uno addizionale.

4.4. Certificato di omologazione

Per l'omologazione di cui ai punti 3.1, 3.2 e 3.3, viene emesso un certificato conforme al modello specificato nell'allegato VI.

- 5. MARCATURE DEL MOTORE
- 5.1. Il motore omologato come entità tecnica deve recare:
- 5.1.1. il marchio o la denominazione commerciale del costruttore del motore:

5.1.2. la descrizione commerciale del costruttore:

IT

- 5.1.3. il numero di omologazione CE preceduto dalle lettere indicanti il paese che concede l'omologazione $CE(^1)$.
- 5.1.4. Nel caso di un motore a GN, una delle seguenti marcature, disposta dopo il numero di omologazione CE:
 - H nel caso che il motore sia omologato e tarato per gas del gruppo H;
 - L nel caso che il motore sia omologato e tarato per gas del gruppo L;
 - HL nel caso che il motore sia omologato e tarato sia per il gruppo H che per il gruppo L di gas;
 - H_t nel caso che il motore sia omologato e tarato per una specifica composizione di gas del gruppo H e possa venire trasformato per un altro specifico gas del gruppo H mediante registrazione dell'alimentazione del motore;
 - L_t nel caso che il motore sia omologato e tarato per una specifica composizione di gas del gruppo L e possa venire trasformato per un altro specifico gas del gruppo L mediante registrazione dell'alimentazione del motore;
 - HL_t nel caso che il motore sia omologato e tarato per una specifica composizione di gas nell'intervallo H o nell'intervallo L e possa venire trasformato per un altro specifico gas del gruppo H o del gruppo L mediante registrazione dell'alimentazione del motore.

5.1.5. Targhette

Nel caso di motori alimentati a GN o GPL con omologazione limitata ad un gruppo di combustibili, si possono applicare le seguenti targhette:

5.1.5.1. Contenuto

Le targhette devono fornire le seguenti informazioni:

Nel caso del punto 4.2.1.3, la targhetta deve riportare la dicitura «USARE SOLO GAS NATURALE GRUPPO H». Se del caso, sostituire «H» con «L».

Nel caso del punto 4.2.2.3, la targhetta deve riportare la dicitura «USARE SOLO GAS NATURALE DI COMPOSIZIONE ...» o «USARE SOLO GAS DI PETROLIO LIQUEFATTO DI COMPOSIZIONE ...» secondo il caso. La targhetta deve riportare tutte le informazioni indicate nelle appropriate tabelle dell'allegato IV, con i singoli costituenti e i limiti specificati dal costruttore del motore.

Le lettere e le cifre devono avere un'altezza di almeno 4 mm.

Nota

Se per mancanza di spazio non è possibile applicare tale targhetta, si può utilizzare un codice semplificato. In tal caso note esplicative contenenti tutte le suddette informazioni devono essere facilmente accessibili per la persona che riempie il serbatoio o esegue la manutenzione o riparazione del motore e dei suoi accessori, nonché per le autorità interessate. L'ubicazione e il contenuto di dette note esplicative saranno stabiliti di concerto dal costruttore e dall'autorità che rilascia l'omologazione.

5.1.5.2. Proprietà

Le targhette devono essere in grado di durare per tutta la vita utile del motore e devono essere chiaramente leggibili, e indelebili. In aggiunta le targhette devono essere apposte in modo tale che il loro fissaggio abbia una durata pari alla vita utile del motore e che non possano venire rimosse senza distruggerle o cancellarle.

^{(1) 1 =} Germania, 2 = Francia, 3 = Italia, 4 = Paesi Bassi, 5 = Svezia, 6 = Belgio, 9 = Spagna, 11 = Regno Unito, 12 = Austria, 13 = Lussemburgo, 16 = Norvegia, 17 = Finlandia, 18 = Danimarca, 21 = Portogallo, 23 = Grecia, FL = Liechtenstein, IS = Islanda IRL = Irlanda.

5.1.5.3. Posizionamento

Le targhette devono esser fissate ad una parte del motore necessaria per il normale funzionamento dello stesso e che in linea di massima non deve essere sostituita per tutta la vita del motore. In aggiunta queste targhette devono essere posizionate in modo da essere facilmente visibili per una persona di altezza media dopo che il motore è stato completato con tutti i dispositivi occorrenti per il suo funzionamento.

- 5.2. In caso di domanda di omologazione CE per un tipo di veicolo relativamente al suo motore, la marcatura specificata al punto 5.1.5 va apposta anche in prossimità del bocchettone del combustibile.
- 5.3. In caso di domanda di omologazione CE per un tipo di veicolo con un motore omologato, la marcatura specificata al punto 5.1.5 va apposta anche in prossimità del bocchettone del combustibile.
- SPECIFICHE E PROVE

6.1. Informazioni generali

Gli elementi che possono influire sull'emissione di inquinanti gassosi e di particolato da motori diesel e sull'emissione di inquinanti gassosi da motori a gas devono essere progettati, costruiti e montati in modo che, in condizioni d'uso normali, il motore soddisfi le disposizioni della presente direttiva.

6.1.1. L'utilizzo di un impianto di manipolazione e/o di una strategia contraddittoria di controllo delle emissioni è vietato. Se l'autorità di omologazione sospetta che un tipo di veicolo utilizzi uno o più impianti di manipolazione e/o una strategia contraddittoria di controllo delle emissioni in determinate condizioni di funzionamento, il costruttore, su richiesta, deve fornire informazioni in merito al funzionamento di tali impianti e all'effetto sulle emissioni dell'utilizzo degli stessi e/o della strategia di controllo. Tali informazioni devono comprendere una descrizione di tutti i componenti di controllo delle emissioni, la logica del sistema di controllo del combustibile, incluse le strategie di regolazione dei tempi e i punti di commutazione nel corso di tutte le modalità di funzionamento. Le informazioni devono rimanere strettamente riservate e non vanno accluse alla documentazione richiesta nell'Allegato I, punto 3.

6.2. Specifiche relative all'emissione di inquinanti gassosi e particolato e di fumo

Per l'omologazione in base alla riga A delle tabelle al punto 6.2.1 le emissioni devono essere determinate mediante le prove ESC e ELR sui motori diesel convenzionali, inclusi quelli provvisti di apparecchiatura elettronica di iniezione del combustibile, riciclo del gas di scarico (EGR), e/o catalizzatori di ossidazione. I motori diesel provvisti di sistemi avanzati di post-trattamento dello scarico, come catalizzatori di deNO $_{\rm x}$ e/o trappole del particolato, devono inoltre venire sottoposti alla prova ETC. Per i motori a gas, le emissioni gassose devono essere determinate con la prova ETC.

Per le prove di omologazione in base alle righe B1 o B2 o alla riga C delle tabelle di cui al punto 6.2.1 le emissioni devono essere determinate mediante le prove ESC, ELR ed ETC.

Per i motori a gas le emissioni gassose devono essere determinate con la prova ETC.

I procedimenti di prova ESC ed ELR sono descritti nell'allegato III, appendice 1; il procedimento di prova ETC nell'allegato III, appendici 2 e 3.

Le emissioni di inquinanti gassosi e di particolato, se del caso, e di fumo, se del caso, prodotte dal motore sottoposto a prova vengono misurate mediante i metodi descritti nell'allegato III, appendice 4. L'allegato V descrive i sistemi analitici raccomandati per gli inquinanti gassosi, i sistemi raccomandati di campionamento del particolato e il sistema raccomandato di misurazione del fumo.

Il servizio tecnico può approvare altri sistemi o altri analizzatori se questi risultano fornire risultati equivalenti nel rispettivo ciclo di prova. La determinazione dell'equivalenza dei sistemi sarà basata su uno studio di correlazione su 7 coppie di campioni (o più) tra il sistema in considerazione e uno dei sistemi di riferimento della presente direttiva. Per le emissioni di particolato, è riconosciuto come sistema di riferimento solo il sistema di diluizione a flusso pieno. «Risultati» è riferito al valore di emissione per lo specifico ciclo. Le prove di verifica della correlazione devono essere eseguite presso lo stesso laboratorio,

con la stessa cella di prova e sullo stesso motore, e di preferenza in parallelo. Il criterio di equivalenza è definito come concordanza entro il ±5% delle medie sulle coppie di campioni. Per l'introduzione di un nuovo sistema nella direttiva, la determinazione di equivalenza deve essere basata sul calcolo di ripetibilità e riproducibilità descritto nella norma ISO 5725.

6.2.1. Valori limite

Le masse specifiche del monossido di carbonio, degli idrocarburi totali, degli ossidi di azoto e del particolato, determinate secondo la prova ESC e del fumo, determinato secondo la prova ELR, non devono superare i valori indicati nella tabella 1.

Tabella 1

Valori limite — prove ESC e ELR

Riga	Massa di monossido di carbonio	Massa di idrocarburi	Massa di ossidi di azoto	Massa di particolato	Fumo
3	(CO) g/kWh	(HC) g/kWh	(NO _x) g/kWh	(PT) g/kWh	m^{-1}
A (2000)	2,1	0,66	5,0	0,10 0,13 (1)	0,8
B1 (2005)	1,5	0,46	3,5	0,02	0,5
B2 (2008)	1,5	0,46	2,0	0,02	0,5
C (EEV)	1,5	0,25	2,0	0,02	0,15

 $^{{\}rm (^l)} \quad \text{Per motori aventi cilindrata inferiore a 0,75} \; dm^3 \; per \; cilindro \; e \; un \; regime \; nominale \; maggiore \; di \; 3 \; 000 \; min^{-1}.$

Per i motori diesel sottoposti aggiuntivamente alla prova ETC, e specificamente per i motori a gas, le masse specifiche del monossido di carbonio, degli idrocarburi diversi dal metano, del metano (se del caso), degli ossidi d'azoto e del particolato (se del caso) non devono superare i valori indicati nella tabella 2.

Tabella 2

Valori limite — prova ETC (¹)

Riga	Massa di monos- sido di carbonio	Massa di idro- carburi diversi dal metano	Massa di metano	Massa di ossidi d'azoto	Massa di particolato
	(CO) g/kWh	(NMHC) g/kWh	(CH ₄) (²) g/kWh	(NO _x) g/kWh	(PT) (³) g/kWh
A (2000)	5,45	0,78	1,6	5,0	0,16 0,21 (4)
B1 (2005)	4,0	0,55	1,1	3,5	0,03
B2 (2008)	4,0	0,55	1,1	2,0	0,03
C (EEV)	3,0	0,40	0,65	2,0	0,02

⁽¹) Le condizioni di verifica dell'accettabilità della prova ETC (cfr. allegato III, Appendice 2, punto 3.9) all'atto della misurazione delle emissioni dei motori a gas rispetto ai valori limite applicabili della riga A saranno riesaminate e, se necessario, modificate conformemente alla procedura di cui all'articolo 13 della direttiva 70/156/CEE.

⁽²⁾ Solo per motori a GN.

⁽³⁾ Non si applica ai motori a gas nella fase A e nelle fasi B1 e B2.

⁽⁴⁾ Per motori aventi cilindrata inferiore a 0,75 dm³ per cilindro e un regime nominale superiore a 3 000 min⁻¹.

- 6.2.2. Misura degli idrocarburi per i motori diesel e a gas
- 6.2.2.1. Il costruttore può scegliere di misurare la massa degli idrocarburi totali (THC) nella prova ETC invece di misurare la massa degli idrocarburi totali diversi dal metano. In tal caso, il limite per la massa degli idrocarburi totali è uguale a quello mostrato in tabella 2 per la massa degli idrocarburi diversi dal metano.
- 6.2.3. Prescrizioni specifiche per i motori diesel
- 6.2.3.1. La massa specifica degli ossidi d'azoto misurata nei punti di controllo casuali entro l'area di controllo della prova ESC non deve superare di oltre il 10 per cento i valori interpolati dalle modalità di prova adiacenti. (Rif. allegato III, appendice 1, punti 4.6.2 e 4.6.3).
- 6.2.3.2. L'indice di fumo al regime di prova casuale dell'ELR non deve superare il più alto degli indici di fumo dei due regimi di prova adiacenti di oltre il 20%, o il valore limite di oltre il 5%; si considera il valore più alto.

INSTALLAZIONE SUL VEICOLO

- 7.1. Il motore deve essere installato sul veicolo in modo da rispettare le seguenti caratteristiche concernenti l'omologazione del motore:
- 7.1.1. la depressione di aspirazione non deve superare quella specificata nell'allegato VI per il motore omologato;
- 7.1.2. la contropressione allo scarico non deve superare quella specificata nell'allegato VI per il motore omologato;
- 7.1.3. il volume del sistema di scarico non deve differire di oltre il 40% da quello specificato nell'allegato VI per il motore omologato;
- 7.1.4. la potenza assorbita dai dispositivi ausiliari occorrenti per il funzionamento del motore non deve superare quella specificata nell'allegato VI per il motore omologato.

8. FAMIGLIA DI MOTORI

8.1. Parametri che definiscono la famiglia di motori

La famiglia di motori, determinata dal costruttore del motore, può essere definita in base a caratteristiche fondamentali che devono essere comuni a tutti i motori della famiglia. In alcuni casi si possono avere interazioni fra i parametri. Tenere conto anche di questi effetti per garantire che all'interno di una famiglia di motori siano inclusi solo motori con caratteristiche di emissione allo scarico simili.

Perché motori differenti siano considerati appartenenti alla stessa famiglia di motori, essi devono avere in comune i parametri fondamentali del seguente elenco:

8.1.1.	Ciclo (di com	ibustione:

- 2 tempi
- 4 tempi

8.1.2. Fluido di raffreddamento:

- aria
- acqua
- olio

8.1.3. Per motori a gas e per motori con post-trattamento

Numero di cilindri

(altri motori diesel con un numero di cilindri minore rispetto al motore capostipite possono essere considerati come appartenenti alla stessa famiglia di motori se il sistema di alimentazione dosa il combustibile per ogni singolo cilindro).

catalizzatore di ossidazione

catalizzatore di riduzione

reattore termico

trappola del particolato

8.2. Scelta del motore capostipite

8.2.1. Motori diesel

Il motore capostipite della famiglia deve essere selezionato in base al criterio principale della quantità massima di combustibile erogata per ogni corsa al regime dichiarato di coppia massima. Nel caso in cui due o più motori condividano questo criterio principale, il motore capostipite sarà scelto in base al criterio secondario della quantità massima di combustibile erogata per ogni corsa al regime nominale. In certi casi, l'autorità omologante può ritenere che il caso peggiore per quanto riguarda il livello delle emissioni di una famiglia venga caratterizzato meglio provando un secondo motore. Pertanto l'autorità omologante può selezionare un secondo motore da sottoporre a prova, sulla base di caratteristiche che indicano che esso può presentare i livelli massimi di emissioni all'interno di quella famiglia di motori.

Se la famiglia comprende motori che presentano altre caratteristiche variabili che probabilmente incidono sulle emissioni allo scarico, anche queste caratteristiche devono essere identificate e considerate nella scelta del motore capostipite.

8.2.2. Motori a gas

Il motore capostipite della famiglia deve essere scelto in base al criterio principale della massima cilindrata. Nel caso in cui due o più motori condividano questo criterio principale, il motore capostipite viene scelto utilizzando i criteri secondari nel seguente ordine:

- quantità massima di combustibile erogata per ogni corsa al regime di potenza nominale dichiarato;
- fasatura di accensione più avanzata;
- minimo tasso di EGR;
- mancanza di pompa dell'aria o pompa con il minimo flusso effettivo d'aria.

In certi casi, l'autorità omologante può ritenere che il caso peggiore per quanto riguarda il livello delle emissioni di una famiglia venga caratterizzato meglio provando un secondo motore. Pertanto l'autorità omologante può selezionare un secondo motore da sottoporre a prova, sulla base di caratteristiche che indicano che esso può presentare i livelli massimi di emissioni all'interno di quella famiglia di motori.

9. CONFORMITÀ DELLA PRODUZIONE

9.1. Le misure intese a garantire la conformità della produzione sono prese nel rispetto delle disposizioni dell'articolo 10 della direttiva 70/156/CEE. La conformità della produzione è verificata in base alla descrizione contenuta nel certificato di omologazione che figura nell'allegato VI della presente direttiva.

Qualora l'autorità competente non fosse soddisfatta del procedimento di controllo del costruttore, si applicano i punti 2.4.2 e 2.4.3 nell'allegato X della direttiva 70/156/CEE.

- 9.1.1. Se si deve eseguire la misurazione delle emissioni inquinanti e se un tipo di motore dispone di una o più estensioni dell'omologazione, le prove sono eseguite sul motore o sui motori descritti nel fascicolo informativo sulla relativa estensione.
- 9.1.1.1. Conformità del motore per la prova delle emissioni inquinanti

Dopo la presentazione all'autorità, il costruttore non può eseguire alcuna regolazione sui motori selezionati.

- 9.1.1.1. Si scelgono a caso tre motori della serie. I motori sottoposti soltanto alle prove ESC ed ELR o soltanto alla prova ETC per l'omologazione in base alla riga A delle tabelle del punto 6.2.1 devono essere sottoposti alle prove specificamente previste per il controllo della conformità della produzione. Con l'assenso dell'autorità competente tutti gli altri motori omologati in base alle righe A, B1 o B2 o C delle tabelle di cui al punto 6.2.1 sono sottoposti ai cicli di prova ESC ed ELR o al ciclo ETC per il controllo della conformità della produzione. I valori limite figurano al punto 6.2.1 del presente allegato.
- 9.1.1.1.2. Se l'autorità è soddisfatta della deviazione standard della produzione indicata dal costruttore ai sensi dell'allegato X della direttiva 70/156/CEE, che si applica ai veicoli a motore ed ai relativi rimorchi, le prove sono eseguite secondo l'appendice 1 del presente allegato.

Se l'autorità non è soddisfatta della deviazione standard della produzione indicata dal costruttore ai sensi dell'allegato X della direttiva 70/156/CEE che si applica ai veicoli a motore ed ai relativi rimorchi, le prove sono eseguite secondo l'appendice 2 del presente allegato.

Su richiesta del costruttore, la prova può essere effettuata secondo l'appendice 3 del presente allegato.

9.1.1.1.3. La produzione di una serie è considerata conforme o non conforme sulla base di una prova dei motori mediante campionamento, quando siano stati ottenuti un'accettazione per tutti gli inquinanti o un rifiuto per un inquinante, secondo i criteri di prova applicati nella rispettiva appendice.

Quando sia stata raggiunta una decisione di accettazione per un inquinante, questa non è modificata da eventuali altre prove eseguite per giungere a una decisione in merito agli altri inquinanti.

Quando non sia stata adottata una decisione di accettazione per tutti gli inquinanti ma non sia stato registrato alcun rifiuto per un inquinante, la prova è eseguita su un altro motore (vedi figura 2).

Il costruttore può decidere in qualunque momento di interrompere le prove se non viene presa alcuna decisione, nel qual caso viene registrato un rifiuto.

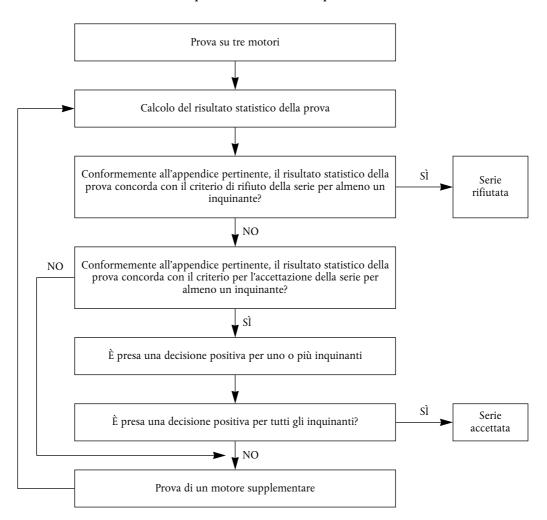
- 9.1.1.2. Le prove sono eseguite solo su motori nuovi. I motori alimentati a gas verranno rodati utilizzando la procedura definita nel punto 3 dell'appendice 2 dell'allegato III.
- 9.1.1.2.1. Tuttavia, a richiesta del costruttore, le prove possono essere eseguite su motori diesel o a gas che sono stati rodati per un periodo di tempo superiore a quello di cui al punto 9.1.1.2, fino ad un massimo di 100 ore di rodaggio. In questo caso il rodaggio è effettuato dal costruttore che deve impegnarsi a non eseguire alcuna regolazione su detti motori.
- 9.1.1.2.2. Se il costruttore chiede di eseguire un rodaggio in conformità del punto 9.1.1.2.1, questo può venire effettuato su:
 - tutti i motori sottoposti a prova, oppure
 - il primo motore sottoposto a prova, determinando un coefficiente di evoluzione calcolato come segue:
 - le emissioni di inquinante sono misurate a zero e a «x» ore sul primo motore sottoposto alla prova,
 - il coefficiente di evoluzione delle emissioni tra zero e «x» ore è calcolato per ciascun inquinante:

emissioni «x» ore emissioni zero ore

Il coefficiente può essere inferiore a 1;

Gli altri motori non sono sottoposti al rodaggio, ma alle loro emissioni a zero ore è applicato il coefficiente di evoluzione.

In questo caso, i valori da considerare sono:


- i valori ad «x» ore per il primo motore,
- i valori a zero ore moltiplicati per il coefficiente di evoluzione per i motori successivi.
- 9.1.1.2.3. Per motori diesel e motori a GPL, tutte queste prove possono essere eseguite con combustibile normalmente in commercio. Tuttavia, a richiesta del costruttore, possono essere utilizzati i combustibili di riferimento descritti nell'allegato IV. Come descritto al punto 4 del presente allegato, questo implica prove con almeno due combustibili di riferimento per ogni motore a gas.

- 9.1.1.2.4. Per motori a GN, tutte queste prove possono essere eseguite con combustibile normalmente in commercio nel modo seguente:
 - per motori marcati H, con un combustibile normalmente in commercio del gruppo H;
 - per motori marcati L con un combustibile normalmente in commercio del gruppo L;
 - per motori marcati HL, con un combustibile normalmente in commercio del gruppo H o del gruppo I..

Tuttavia, a richiesta del costruttore, possono essere utilizzati i combustibili di riferimento descritti nell'allegato IV. Come descritto al punto 4 del presente allegato questo implica prove con almeno due combustibili di riferimento per ogni motore a gas.

- 9.1.1.2.5. In caso di controversia per la non conformità di motori a gas quando si usa un combustibile commerciale, le prove vengono eseguite con un combustibile di riferimento col quale è stato provato il motore capostipite, o con l'eventuale combustibile aggiuntivo 3 di cui ai punti 4.1.3.1 e 4.2.1.1 coi quali potrebbe essere stato provato il motore capostipite. I risultati devono poi venire convertiti mediante un calcolo che applica gli appropriati fattori «r», «ra» o «rb» come descritto nei punti 4.1.3.2, 4.1.4.1 e 4.2.1.2. Se r, ra o rb sono inferiori ad uno non si effettua alcuna correzione. I risultati misurati e i risultati calcolati devono dimostrare che il motore rispetta i valori limite con tutti i combustibili pertinenti (combustibili 1, 2 e, se del caso, combustibile 3).
- 9.1.1.2.6. Le prove di conformità della produzione di un motore a gas stabilite per il funzionamento con una composizione specifica del combustibile devono essere eseguite sul combustibile per il quale il motore è stato

Figura 2
Schema della prova di conformità della produzione

PROCEDIMENTO PER LA PROVA DI CONFORMITÀ DELLA PRODUZIONE QUANDO LA DEVIAZIONE STANDARD È SODDISFACENTE

- 1. La presente appendice descrive il procedimento da applicare per verificare la conformità della produzione per le emissioni inquinanti nel caso la deviazione standard della produzione indicata dal costruttore sia soddisfacente.
- 2. Con una dimensione minima del campione di tre motori, il procedimento di campionamento è fissato in modo che la probabilità che un lotto sia accettato con il 40% di produzione difettosa è 0,95 (rischio del produttore = 5%), mentre la probabilità che un lotto sia accettato con il 65% di produzione difettosa è 0,10 (rischio del consumatore = 10%).
- 3. Per ciascuno degli inquinanti indicati al punto 6.2.1 dell'allegato I si applica il seguente procedimento (vedi figura 2):

Sia

ΙT

- L = il logaritmo naturale del valore limite dell'inquinante,
- χ_i = il logaritmo naturale del valore misurato per il motore «i» del campione,
- s = una stima della deviazione standard della produzione (dopo aver calcolato il logaritmo naturale delle misurazioni),
- n = la dimensione del campione preso in considerazione.
- 4. Per ciascun campione si calcola la somma delle deviazioni standard rispetto al limite con la seguente formula:

$$\frac{1}{S} \, \sum_{i=1}^n (L - \chi_i)$$

5. Successivamente:

- se il risultato statistico della prova è superiore al limite di accettazione per la dimensione del campione indicata nella tabella 3, si giunge all'accettazione per l'inquinante;
- se il risultato statistico della prova è inferiore al limite di rifiuto per la dimensione del campione indicata nella tabella 3, si giunge ad un rifiuto per l'inquinante;
- altrimenti, si procede alla prova di un motore supplementare conformemente al punto 9.1.1.1 dell'allegato I applicando il procedimento al campione maggiorato di un'unità.

IT

 ${\it Tabella~3}$ Limiti di accettazione e di rifiuto del piano di campionamento dell'appendice 1 Dimensione minima del campione: 3

Numero totale dei motori sottoposti a prova (dimensione del campione) n	Limite di accettazione A _n	Limite di rifiuto B _n
3	3,327	-4,724
4	3,261	-4,790
5	3,195	-4,856
6	3,129	-4,922
7	3,063	-4,988
8	2,997	-5,054
9	2,931	-5,120
10	2,865	-5,185
11	2,799	-5,251
12	2,733	-5,317
13	2,667	-5,383
14	2,601	- 5,449
15	2,535	-5,515
16	2,469	-5,581
17	2,403	-5,647
18	2,337	-5,713
19	2,271	-5,779
20	2,205	-5,845
21	2,139	-5,911
22	2,073	-5,977
23	2,007	-6,043
24	1,941	-6,109
25	1,875	-6,175
26	1,809	-6,241
27	1,743	-6,307
28	1,677	-6,373
29	1,611	-6,439
30	1,545	-6,505
31	1,479	-6,571
32	-2,112	-2,112

ΙT

PROCEDIMENTO PER LA PROVA DI CONFORMITÀ DELLA PRODUZIONE QUANDO LA DEVIAZIONE STANDARD È INSODDISFACENTE O NON DISPONIBILE

- La presente appendice descrive il procedimento da applicare per verificare la conformità della produzione per le emissioni inquinanti nel caso la deviazione standard della produzione indicata dal costruttore sia insoddisfacente o non disponibile.
- Con una dimensione minima del campione di tre motori, il procedimento di campionamento è fissato in modo che la probabilità che un lotto sia accettato con il 40% di produzione difettosa è 0,95 (rischio del produttore = 5%), mentre la probabilità che un lotto sia accettato con il 65% di produzione difettosa è 0,10 (rischio del consumatore = 10%).
- 3. I valori degli inquinanti di cui al punto 6.2.1 dell'allegato I sono considerati logaritmi a distribuzione normale e devono essere trasformati nei loro logaritmi naturali. Siano «m₀» e «m» rispettivamente le dimensioni minime e massime del campione (m₀ = 3 e m = 32) e sia «n» la dimensione del campione in esame.
- 4. Se i logaritmi naturali delle misurazioni eseguite sulla serie sono $\chi_1, \chi_2, ..., \chi_i$ ed «L» è il logaritmo naturale del valore limite per l'inquinante, si definiscano

 $d_i = \chi_i - L$

e

$$\overline{d_n} = \frac{1}{n} \sum_{i=1}^n d_i$$

$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (d_i - \overline{d_n}\,)^2$$

5. La Tabella 4 mostra i valori dei numeri di accettazione (A_n) e di <u>rifiuto</u> (B_n) in funzione del numero di campioni considerati. Il risultato statistico della prova è dato dal rapporto $\overline{d_n}/V_n$ e deve essere utilizzato nel modo seguente per determinare se la serie è stata accettata o rifiutata.

Per $m_0 \le n \le m$:

- serie accettata se $\frac{\overline{d_n}}{V_n} \le A_n$
- serie rifiutata se $\frac{\overline{d_n}}{V_n} \ge B_n$
- eseguire un'altra misurazione se $A_n \leq \frac{\overline{d_n}}{V_n} \leq B_n$
- 6. Osservazioni

Per calcolare i valori successivi della statistica della prova, sono utili le seguente formule ricorsive:

$$\overline{d_n} = \left(1 - \frac{1}{n}\right) \overline{d_{n-1}} + \frac{1}{n} d_n$$

$$V_{n}^{2}=\bigg(1-\frac{1}{n}\bigg)V_{n-1}^{2}+\frac{(\overline{d_{n}}-d_{n})^{2}}{n-1}$$

$$(n = 2, 3, ...; \overline{d_1} = d_1; V_1 = 0)$$

IT

 ${\it Tabella~4}$ Limiti di accettazione e di rifiuto del piano di campionamento dell'appendice 2

Dimensione minima del campione: 3

Numero totale dei motori sottoposti a prova (dimensione del campione)	Limite di accettazione A _n	Limite di rifiuto B _n
3	-0,80381	16,64743
4	-0,76339	7,68627
5	-0,72982	4,67136
6	-0,69962	3,25573
7	-0,67129	2,45431
8	-0,64406	1,94369
9	-0,61750	1,59105
10	-0,59135	1,33295
11	-0,56542	1,13566
12	-0,53960	0,97970
13	-0,51379	0,85307
14	-0,48791	0,74801
15	-0,46191	0,65928
16	-0,43573	0,58321
17	-0,40933	0,51718
18	-0,38266	0,45922
19	-0,35570	0,40788
20	-0,32840	0,36203
21	-0,30072	0,32078
22	-0,27263	0,28343
23	-0,24410	0,24943
24	-0,21509	0,21831
25	-0,18557	0,18970
26	-0,15550	0,16328
27	-0,12483	0,13880
28	-0,09354	0,11603
29	-0,06159	0,09480
30	-0,02892	0,07493
31	-0,00449	0,05629
32	0,03876	0,03876

PROCEDIMENTO PER LA PROVA DI CONFORMITÀ DELLA PRODUZIONE SU RICHIESTA DEL COSTRUTTORE

- 1. La presente appendice descrive il procedimento da applicare per verificare, su richiesta del costruttore, la conformità della produzione riguardo le emissioni inquinanti.
- Con una dimensione minima del campione di tre motori, il procedimento di campionamento è fissato in modo che la probabilità che un lotto sia accettato con il 30% di produzione difettosa è 0,90 (rischio del produttore = 10%), mentre la probabilità che un lotto sia accettato con il 65% di produzione difettosa è 0,10 (rischio del consumatore = 10%).
- 3. Per ciascuno degli inquinanti indicati al punto 6.2.1 dell'allegato I si applica il seguente procedimento (vedi figura 2):

Sia

IT

- L il valore limite dell'inquinante,
- x_i il valore della misurazione per il motore «i» del campione,
- n la dimensione del campione preso in considerazione.
- 4. Calcolare per il campione il risultato statistico della prova quantificando il numero dei motori non conformi, cioè $x_i \ge L$.

5. Successivamente:

- se il risultato statistico della prova è inferiore o uguale al numero di accettazione per la dimensione del campione indicata nella tabella 5, si giunge all'accettazione per l'inquinante;
- se il risultato statistico della prova è superiore o uguale al numero di rifiuto per la dimensione del campione indicata nella tabella 5, si giunge ad un rifiuto per l'inquinante;
- altrimenti, si procede alla prova di un motore supplementare conformemente al punto 9.1.1.1 dell'allegato I applicando il procedimento di calcolo al campione maggiorato di un'unità.

I valori di accettazione e di rifiuto indicati nella tabella 5 sono calcolati conformemente alla norma internazionale ISO 8422/1991.

IT

 ${\it Tabella~5}$ Limiti di accettazione e di rifiuto del piano di campionamento dell'appendice 3

Dimensione minima del campione: 3

Numero totale dei motori sottoposti a prova (dimensione del campione)	Limite di accettazione	Limite di rifiuto
3	_	3
4	0	4
5	0	4
6	1	5
7	1	5
8	2	6
9	2	6
10	3	7
11	3	7
12	4	8
13	4	8
14	5	9
15	5	9
16	6	10
17	6	10
18	7	11
19	8	9

IT

SCHEDA INFORMATIVA N. ...

CONFORME ALL'ALLEGATO I DELLA DIRETTIVA 70/156/CEE DEL CONSIGLIO CONCERNENTE L'OMOLOGAZIONE CE

e relativa ai provvedimenti da prendere contro l'emissione di inquinanti gassosi e di particolato prodotti dai motori ad accensione spontanea destinati alla propulsione di veicoli e contro l'emissione di inquinanti gassosi prodotti dai motori ad accensione comandata alimentati con gas naturale o con gas di petrolio liquefatto destinati alla propulsione di veicoli

Direttiva 88/77/CEE modificata da ultimo dalla direttiva 1999/96/CE

Tipo di veicolo/motore capostipite/tipo di motore (¹):					
•					
0.	DATI GENERALI				
0.1.	Marca (denominazione commerciale del costruttore):				
0.2.	Tipo e descrizione commerciale (citare eventuali varianti):				
0.3.	Mezzo di identificazione del tipo e sua posizione, se marcato sul veicolo:				
0.4.	Categoria del veicolo (se applicabile):				
0.5.	Categoria del motore: diesel/a GN/a GPL(¹)				
0.6.	Nome e indirizzo del costruttore:				
0.7.	Posizione e modo di fissaggio delle targhette e delle iscrizioni regolamentari:				
0.8.	Posizione e modo di fissaggio del marchio di omologazione CE per i componenti e le entità tecniche:				
0.9.	Indirizzo dello o degli stabilimenti di montaggio:				
ALLE	GATI				
1.	Caratteristiche fondamentali del motore (capostipite) e informazioni relative alla conduzione della prova				
2.	Caratteristiche fondamentali della famiglia di motori				
3.	Caratteristiche fondamentali dei tipi di motore della famiglia				
4.	Caratteristiche delle parti del veicolo correlate al motore (se applicabile)				
5.	Fotografie e/o disegni del motore capostipite/tipo di motore e, se applicabile, del vano motore				
6.	Elenco degli altri eventuali allegati				
Data o	Data e numero di fascicolo				

⁽¹⁾ Cancellare le diciture inutili.

Appendice 1

CARATTERISTICHE FONDAMENTALI DEL MOTORE (CAPOSTIPITE) E INFORMAZIONI RELATIVE ALLA CONDUZIONE DELLA PROVA $(^1)$

1.	Descrizione del motore		
1.1.	Costruttore:		
1.2.	Codice motore del costruttore:		
1.3.	Ciclo: quattro tempi/due tempi (²)		
1.4.	Numero e disposizione dei cilindri:		
1.4.1.	Alesaggio:		mm
1.4.2.	Corsa:		mm
1.4.3.	Ordine di accensione:		
1.5.	Cilindrata:		cm ³
1.6.	Rapporto volumetrico di compressione (3):		
1.7.	Disegno/i della camera di combustione della testa del pistone:		
1.8.	Sezione minima delle luci di entrata e di uscita:		cm ²
1.9.	Regime al minimo:		min ⁻¹
1.10.	Potenza massima netta:	xW a	min ⁻¹
1.11.	Regime massimo ammesso:		min ⁻¹
1.12.	Coppia massima netta:	Nm a	min ⁻¹
1.13.	Sistema di combustione: accensione per compressione/accension	e comandata (²)	
1.14.	Combustibile: Diesel/GPL/GN-H/GN-L/GH-HL (²)		
1.15.	Sistema di raffreddamento		
1.15.1.	A liquido		
1.15.1.1.	Natura del liquido:		
1.15.1.2.	Pompa/e di circolazione: sì/no (²)		
1.15.1.3.	Caratteristiche o marca (marche) e tipo/i (se applicabile):		
1.15.1.4.	Rapporto/i di trasmissione (se applicabile):		
1.15.2.	Ad aria		
1.15.2.1.	Ventola: sì/no (²)		
1.15.2.2.	Caratteristiche o marca (marche) e tipo/i (se applicabile):		
1.15.2.3.	Rapporto/i di trasmissione (se applicabile):		
1.16.	Temperatura consentita dal costruttore		
1.16.1.	Raffreddamento a liquido: temperatura massima all'uscita:		K
1.16.2.	Raffreddamento ad aria: Punto di riferimento:		
	Temperatura massima in corrispondenza del punto di riferiment	o:	K

⁽¹) Nel caso di motori e sistemi non convenzionali, il costruttore deve fornire dettagli equivalenti a quelli specificati. (²) Cancellare le diciture inutili. (³) Specificare la tolleranza.

ΙΤ

Contenuto totale di metalli preziosi:

2.2.1.6.

⁽¹⁾ Cancellare le diciture inutili.

⁽²⁾ GU L 375 del 31.12.1980, pag. 46.

⁽³⁾ GU L 125 del 16.5.1997, pag. 31.

2.2.1.7.	Concentrazione relativa:
2.2.1.8.	Substrato (struttura e materiale):
2.2.1.9.	Densità delle celle:
2.2.1.10.	Tipo di alloggiamento del o dei convertitori catalitici:
2.2.1.11.	Posizione del o dei convertitori catalici (ubicazione e distanza di riferimento nel condotto di scarico):
2.2.2.	Sensore di ossigeno: sì/no (¹)
2.2.2.1.	Marca/marche:
2.2.2.2.	Tipo:
2.2.2.3.	Posizione:
2.2.3.	Iniezione di aria: sì/no (¹)
2.2.3.1.	Tipo (aria pulsata, pompa per aria, ecc.):
2.2.4.	EGR: sì/no (¹)
2.2.4.1.	Caratteristiche (portata, ecc.):
2.2.5.	Trappola del particolato: sì/no (¹)
2.2.5.1.	Dimensioni, forma e capacità della trappola del particolato:
2.2.5.2.	Tipo e progetto della trappola del particolato:
2.2.5.3.	Ubicazione (distanza di riferimento nel condotto di scarico):
2.2.5.4.	Metodo o sistema di rigenerazione, descrizione e/o disegno:
2.2.6.	Altri sistemi: sì/no (¹)
2.2.6.1.	Descrizione e funzionamento:
3.	Alimentazione del combustibile
3.1.	Motori diesel
3.1.1.	Pompa di alimentazione
	Pressione (²): kPa o diagramma caratteristico (¹):
3.1.2.	Sistema di iniezione
3.1.2.1.	Pompa
3.1.2.1.1.	Marca/marche:
3.1.2.1.2.	Tipo/i:
3.1.2.1.3.	Mandata: mm³ (²) per corsa al regime di giri al min a iniezione massima, o dia- gramma caratteristico (¹) (²):
	Indicare il metodo utilizzato: su motore/su banco prova pompe (¹)
	Se dotato di controllo della sovralimentazione, specificare la mandata di combustibile e la pressione di sovralimentazione caratteristiche in funzione del regime.
3.1.2.1.4.	Anticipo dell'iniezione
3.1.2.1.4.1.	Curva dell'anticipo dell'iniezione (²):
3.1.2.1.4.2.	Fasatura statica di iniezione (²):
3.1.2.2.	Condotti di iniezione mm
3.1.2.2.1.	Lunghezza: mm
3.1.2.2.2.	Diametro interno: mm

⁽¹) Cancellare le diciture inutili.(²) Specificare la tolleranza.

3.1.2.3.1.	Marca/marche:
3.1.2.3.2.	Tipo/i:
3.1.2.3.3.	«Pressione di apertura»: kPa (²)
	o diagramma caratteristico (¹)(²):
3.1.2.4.	Regolatore
3.1.2.4.1.	Marca/marche:
3.1.2.4.2.	Tipo/i:
3.1.2.4.3.	Regime di inizio dell'interruzione a pieno carico: giri/min
3.1.2.4.4.	Regime massimo a vuoto: giri/min
3.1.2.4.5.	Regime al minimo: giri/min
3.1.3.	Sistema di avviamento a freddo:
3.1.3.1.	Marca/marche:
3.1.3.2.	Tipo/i:
3.1.3.3.	Descrizione:
3.1.3.4.	Dispositivo ausiliario di avviamento:
3.1.3.4.1.	Marca/marche:
3.1.3.4.2.	Tipo:
3.2.	Motori a gas (3)
3.2.1.	Combustibile: gas naturale/GPL (¹)
3.2.2.	Regolatore/i di pressione o vaporizzatore/regolatore/i di pressione (¹)
3.2.2.1.	Marca/marche:
3.2.2.2.	Tipo/i:
3.2.2.3.	Numero degli stadi di riduzione della pressione:
3.2.2.4.	Pressione nello stadio finale: min. kPa, max. kPa
3.2.2.5.	Numero dei punti di regolazione principali
3.2.2.6.	Numero di punti di regolazione del minimo:
3.2.2.7.	Numero della certificazione 1999/96/CE:
3.2.3.	Sistema di alimentazione: unità di miscelazione/iniezione di gas/iniezione di liquido/ iniezione diretta (¹)
3.2.3.1.	Regolazione del titolo della miscela:
3.2.3.2.	Descrizione del sistema e/o diagramma e disegni:
3.2.3.3.	Numero di certificazione 1999/96/CE:
3.2.4.	Unità di miscelazione
3.2.4.1.	Numero:
3.2.4.2.	Marca/marche:
3.2.4.3.	Tipo/i:
3.2.4.4.	Ubicazione:
3.2.4.5.	Possibilità di regolazione:

Cancellare le diciture inutili.
 Specificare la tolleranza.
 Nel caso di sistemi conformi ad uno schema differente, fornire informazioni equivalenti (per il punto 3.2).

3.2.4.6.	Numero di certificazione 1999/96/CE:
3.2.5.	Iniezione nel collettore di ammissione
3.2.5.1.	Iniezione: punto singolo/punti multipli (¹)
3.2.5.2.	Iniezione: continua/fasatura simultanea/fasatura sequenziale (¹)
3.2.5.3.	Apparecchiatura di iniezione
3.2.5.3.1.	Marca/marche:
3.2.5.3.2.	Tipo/i:
3.2.5.3.3.	Possibilità di regolazione:
3.2.5.3.4.	Numero di certificazione 1999/96/CE:
3.2.5.4.	Pompa di alimentazione (se applicabile):
3.2.5.4.1.	Marca/marche:
3.2.5.4.2.	Tipo/i:
3.2.5.4.3.	Numero di certificazione 1999/96/CE:
3.2.5.5.	Iniettore/i:
3.2.5.5.1.	Marca/marche:
3.2.5.5.2.	Tipo/i:
3.2.5.5.3.	Numero di certificazione 1999/96/CE:
3.2.6.	Iniezione diretta
3.2.6.1.	Pompa di iniezione/regolatore della pressione (¹)
3.2.6.1.1.	Marca/marche:
3.2.6.1.2.	Tipo/i:
3.2.6.1.3.	Fasatura dell'iniezione:
3.2.6.1.4.	Numero di certificazione 1999/96/CE:
3.2.6.2.	Iniettore/i
3.2.6.2.1.	Marca/marche:
3.2.6.2.2.	Tipo/i:
3.2.6.2.3.	Pressione di apertura o diagramma caratteristico (²):
3.2.6.2.4.	Numero di certificazione 1999/96/CE:
3.2.7.	Centralina elettronica (ECU)
3.2.7.1.	Marca/marche:
3.2.7.2.	Tipo/i:
3.2.7.3.	Possibilità di regolazione:
3.2.8.	Apparecchiature specifiche per il combustibile GN
3.2.8.1.	Variante 1 (solo nel caso dell'omologazione di motori per diverse composizioni specifiche di combustibile)
3.2.8.1.1.	Composizione del combustibile:
	metano (CH ₄): base: % moli; min.: % moli; max.: % moli
	etano (C_2H_6): base: % moli; min.: % moli; max.: % moli
	propano (C ₃ H ₈): base:

⁽¹) Cancellare le diciture inutili.(²) Specificare la tolleranza.

	butano (C ₄ H ₁₀):	base:	% moli;	min.:		% moli;	max.:	% moli
	C5/C5+:	base:	% moli;	min.:		% moli;	max.:	% moli
	ossigeno (O ₂):	base:	% moli;	min.:		% moli;	max.:	% moli
	gas inerti (N ₂ , He ecc.):	base:	% moli;	min.:		% moli;	max.:	% moli
3.2.8.1.2.	Iniettore/i							
3.2.8.1.2.1.	Marca/marche:							
3.2.8.1.2.2.	Tipo/i:							
3.2.8.1.3.	Altre (se del caso)							
3.2.8.2	Variante 2 (solo nel caso di omologazio	ne per varie co	mposizion	i specifi	che di co	mbustibil	e)	
4.	Distribuzione							
4.1.	Alzata massima e angoli di a	pertura e chius	sura riferiti	ai punt	i morti o	dati equi		
4.2.	Intervalli di riferimento e/o di regolazione (¹):							
5.	Sistema di accensione (solo motori con accensione a scintilla)							
5.1.	Tipo di sistema di accensione: bobina comune e candele/bobina singola e candele/bobina sulla candela/altro (specificare) (¹)							
5.2.	Unità di comando dell'accen	sione						
5.2.1.	Marca/marche:							
5.2.2.	Tipo/i:							
5.3.	Curva/mappa dell'anticipo di	accensione (1)	(²):	•••••				
5.4.	Fasatura dell'accensione (2): .			gra	adi prima	del punt	o morto	superiore ad un
	regime di	gi	ri al minut	o e una	MAP di			kPa
5.5.	Candele							
5.5.1.	Marca/marche:							
5.5.2.	Tipo/i:							
5.5.3.	Distanza tra gli elettrodi:							mm
5.6.	Bobina/e di accensione							
5.6.1.	Marca/marche:							
5.6.2.	Tipo/i:							

Dispositivi azionati dal motore 6.

Il motore deve essere presentato alla prova con i dispositivi ausiliari occorrenti per il funzionamento del motore (per esempio ventola, pompa dell'acqua, ecc) come specificato nella, e alle condizioni operative previste nella direttiva 80/1269/CEE (³), modificata da ultimo dalla direttiva 97/21/CE (⁴), allegato I, punto 5.1.1.

⁽¹⁾ Cancellare le diciture inutili.

⁽²) Specificare la tolleranza. (³) GU L 375 del 31.12.1980, pag. 46. (⁴) GU L 125 del 16.5.1997, pag. 31.

7.2.2.

6.1.	Dispositivi	ausiliari da	installare	per la	prova

Se è impossibile o inappropriato installare i dispositivi ausiliari sul banco prova, determinare la potenza da essi assorbita e sottrarla dalla potenza del motore misurata su tutta l'area di funzionamento del ciclo o dei cicli di prova.

6.2. Dispositivi ausiliari da rimuovere per la prova

I dispositivi ausiliari occorrenti solo per il funzionamento del veicolo (per esempio compressore dell'aria, sistema di condizionamento dell'aria ecc.) devono essere rimossi per la prova. Laddove i dispositivi ausiliari non possano venire rimossi, si può determinare la potenza da essi assorbita e aggiungerla alla potenza del motore misurata su tutta l'area di funzionamento del ciclo o dei cicli di prova.

7. Informazioni addizionali sulle condizioni di prova

Potenza assorbita a vari regimi del motore indicati:

7.1.	Lubrificante usato
7.1.1.	Marca:
7.1.2.	Tipo:
	(Se lubrificante e combustibile sono miscelati dichiarare la percentuale d'olio nella miscela):
7.2.	Apparecchiature azionate dal motore (se applicabile)
	La potenza assorbita dai dispositivi ausiliari deve essere determinata solo,
	— se non sono applicati sul motore dispositivi ausiliari occorrenti per il suo funzionamento e/o
	— se sono applicati al motore dispositivi ausiliari non occorrenti per il suo funzionamento.
7.2.1.	Elenco e dettagli di identificazione:

	Potenza assorbita (kW) a vari regimi						
Apparecchiature	minimo	basso regime	alto regime	regime A (¹)	regime B (¹)	regime C (¹)	regime di riferi- mento (²)
P(a) Ausiliari occorrenti per il funzionamento del motore (da sot- trarre dalla potenza del motore misurata) vedi punto 6.1							
P(b) Ausiliari non occorrenti per il funzionamento del motore (da aggiungere alla potenza del motore misurata) vedi punto 6.2							

⁽¹⁾ Prova ESC.

⁽²⁾ Solo prova ETC.

Ö	Prestazioni	1.1	4
٥.	FIESTAZIOIII	uei	motore

8.1.	Regimi (1)

Basso regime (n _{lo}):	giri/min
Alto regime (n _{hi}):	giri/min
per i cicli ESC e ELR	
Minimo:	giri/min
Regime A:	giri/min
Regime B:	giri/min
Regime C:	giri/min
per il ciclo ETC	
Regime di riferimento:	giri/min

Potenza del motore (misurata secondo le disposizioni della direttiva $80/1269/\text{CEE}\,(^2)$, modificata da ultimo dalla direttiva $97/21/\text{CE}\,(^3)$, in kW 8.2.

			Regime		
	minimo	regime A (1)	regime B (¹)	regime C (¹)	regime di riferimento (²)
P(m)					
Potenza misurata al banco prova					
P(a)					
Potenza assorbita dai dispositivi ausiliari da applicare per la prova (punto 6.1)					
— se applicati					
— se non applicati	0	0	0	0	0
P(b)					
Potenza assorbita dai dispositivi ausiliari da rimuovere per la prova (punto 6.2)					
— se applicati					
— se non applicati	0	0	0	0	0
P(n) Potenza netta del motore = P(m) - P(a) + P(b)					

⁽¹) Prova ESC. (²) Solo prova ETC.

⁽¹) Specificare la tolleranza, che deve essere entro il ± 3% dei valori dichiarati dal fabbricante. (²) GU L 375 del 31.12.1980, pag. 46. (³) GU L 125 del 16.5.1997, pag. 31.

8.3. Regolazioni del banco dinamometrico (kW)

Le regolazioni del banco dinamometrico per le prove ESC e ELR e per il ciclo di riferimento della prova ETC devono essere basate sulla potenza netta P(n) del motore del punto 8.2. Si raccomanda di installare il motore sul banco prova nella condizione netta. In tal caso, P(m) e P(n) sono uguali. Se è impossibile o inappropriato far funzionare il motore in condizioni nette, le regolazioni del banco dinamometrico devono essere corrette per riportarle alle condizioni nette utilizzando la formula di cui sopra.

8.3.1. Prove ESC e ELR

Calcolare le regolazioni del banco dinamometrico secondo la formula dell'allegato III, appendice 1, punto 1,2

Carias assessments	Regime					
Carico percentuale	minimo	regime A	regime B	regime C		
10	_					
25	_					
50	_					
75	_					
100	_					

8.3.2. Prova ETC

Se il motore non viene provato in condizioni nette, il costruttore del motore deve fornire la formula di correzione per la conversione della potenza misurata o del lavoro del ciclo misurato, determinati secondo l'allegato III, appendice 2, punto 2, nella potenza netta o del lavoro del ciclo netto per tutta l'area di funzionamento del ciclo, che deve essere approvata dal Servizio tecnico.

CARATTERISTICHE FONDAMENTALI DELLA FAMIGLIA DEI MOTORI

1.	Parametri comuni						
1.1.	Ciclo di combustione:						
1.2.	Fluido di raffreddamento:						
1.3.	Numero di cilindri (¹):	Numero di cilindri (¹):					
1.4.	Cilindrata unitaria:						
1.5.	Metodo di alimentazione dell'aria:						
1.6.	Tipo e progetto della camera di combustione:						
1.7.	Valvole e luci: configurazione, dimensioni e numero: .						
1.8.	Sistema di alimentazione combustibile:						
1.9.	Sistema di accensione (motori a gas):						
1.10.	Varie: — sistema di raffreddamento sovralimentazione (¹): — riciclo dei gas di scarico (¹): — iniezione/emulsione d'acqua (¹): — iniezione d'aria (¹):						
1.11.	Dispositivo di post-trattamento dello scarico (¹):						
2.	Elenco della famiglia di motori						
2.1.	Nome della famiglia di motori diesel:						
2.1.1.	Specifiche dei motori della famiglia:						
			Motore capostipite				
	Tipo di motore						
	N. cilindri						
	Regime nominale (giri/min)						
	Combustibile erogato per corsa (mm³)						
	Potenza netta nominale (kW)						
	Regime di coppia massima (giri/min)						
	Combustibile erogato per corsa (mm³)						
	Coppia massima (Nm)						
	Regime di minimo (giri/min)						
	Cilindrata del motore (in % del motore capostipite)				100		

⁽¹⁾ Se non applicabile, indicare n.a.

2.2. Nome della famiglia di motori a gas:

2.2.1. Specifiche dei motori della famiglia:

			Motore capostipite
Tipo di motore			
N. cilindri			
Regime nominale (giri/min)			
Combustibile erogato per corsa (mg)			
Potenza netta nominale (kW)			
Regime di coppia massima (giri/min)			
Combustibile erogato per corsa (mm³)			
Coppia massima (Nm)			
Regime di minimo (giri/min)			
Cilindrata del motore (in % del motore capostipite)			100
Fasatura dell'accensione			
Flusso EGR			
Pompa dell'aria: sì/no			
Portata effettiva della pompa dell'aria			

Appendice 3

CARATTERISTICHE FONDAMENTALI DEI TIPI DI MOTORE APPARTENENTI AD UNA FAMIGLIA $(^1)$

1.	Descrizione del motore	
1.1.	Costruttore:	
1.2.	Codice assegnato al motore dal costruttore:	
1.3.	Ciclo: quattro tempi/due tempi (²)	
1.4.	Numero e disposizione dei cilindri:	
1.4.1.	Alesaggio:	mn
1.4.2.	Corsa:	mn
1.4.3.	Ordine di accensione:	
1.5.	Cilindrata:	cm
1.6.	Rapporto volumetrico di compressione (3)	
1.7.	Disegno/i della camera di combustione della testata del pistone:	
1.8.	Sezione minima delle luci di entrata e di uscita:	cm
1.9.	Regime al minimo:	min ⁻
1.10.	Potenza massima netta:kW a	min-
1.11.	Regime massimo ammesso:	min ⁻
1.12.	Coppia massima netta:	min ⁻
1.13.	Sistema di combustione: accensione per compressione/accensione comandata (²)	
1.14.	Combustibile: Diesel/GPL/GN-H/GN-L/GN-HL (²)	
1.15.	Sistema di raffreddamento	
1.15.1.	A liquido	
1.15.1.1.	Natura del liquido:	
1.15.1.2.	Pompa/e di circolazione: sì/no (²)	
1.15.1.3.	Caratteristiche o marca (marche) e tipo/i (se applicabile):	
1.15.1.4.	Rapporto/i di trasmissione (se applicabile):	
1.15.2.	Ad aria	
1.15.2.1.	Ventola: sì/no (²)	
1.15.2.2.	Caratteristiche o marca (marche) e tipo/i (se applicabile):	
1.15.2.3.	Rapporto/i di trasmissione (se applicabile):	
1.16.	Temperatura consentita dal costruttore	
1.16.1.	Raffreddamento a liquido: temperatura massima all'uscita:	J
1.16.2.	Raffreddamento ad aria: Punto di riferimento:	

Presentare per ciascun motore della famiglia.
 Cancellare le diciture inutili.
 Specificare la tolleranza.

	Temperatura massima in corrispondenza del punto di riferimento: K
1.16.3.	Temperatura massima dell'aria all'uscita del refrigeratore intermedio di aspirazione (se applicabile): K
1.16.4.	Temperatura massima del gas di scarico nel punto del tubo o dei tubi di scarico adiacente alla flangia o alle flange esterne del collettore o dei collettori di scarico del turbocompressore o dei turbocompressori:
1.16.5.	Temperatura del combustibile: min K, max K, max K
	per motori diesel all'ingresso della pompa di iniezione, per motori a gas in corrispondenza dello stadio finale del regolatore di pressione
1.16.6.	Pressione del combustibile: min
	in corrispondenza dello stadio finale del regolatore di pressione, solo per motori a GN
1.16.7.	Temperatura del lubrificante: min
1.17.	Compressore: sì/no (¹)
1.17.1.	Marca:
1.17.2.	Tipo:
1.17.3.	Descrizione del sistema (per esempio pressione massima di sovralimentazione, valvola di sfiato, se applicablile):
1.17.4.	Refrigeratore intermedio: sì/no (¹)
1.18.	Sistema di aspirazione
	Depressione massima ammissibile all'aspirazione al regime nominale del motore e sotto carico del 100% come specificato e alle condizioni di funzionamento precisate nella direttiva 80/1269/CEE (²), modificata da ultimo dalla direttiva 89/491/CEE (³):
1.19.	Sistema di scarico
	Contropressione massima ammissibile allo scarico al regime nominale del motore e sotto carico del 100% come specificato e alle condizioni di funzionamento precisate nella direttiva 80/1269/CEE (²), modificata da ultimo dalla direttiva 89/491/CEE (³):
	Volume nel sistema di scarico:
2.	Misure contro l'inquinamento atmosferico
2.1.	Dispositivi per il riciclo dei gas del basamento (descrizione e disegni):
2.2.	Dispositivi supplementari contro l'inquinamento (se esistono e se non sono compresi in altre voci):
2.2.1.	Convertitore catalitico: sì/no (¹)
2.2.1.1.	Numero di convertitori catalitici e di elementi:
2.2.1.2.	Dimensioni, forma e volume del o dei convertitori catalitici:
2.2.1.3.	Tipo di reazione catalitica:
2.2.1.4.	Contenuto totale di metalli preziosi:
2.2.1.5.	Concentrazione relativa:
2.2.1.6.	Substrato (struttura e materiale):
2.2.1.7.	Densità delle celle:

⁽¹⁾ Cancellare le diciture inutili. (2) GU L 375 del 31.12.1980, pag. 46. (3) GU L 125 del 16.5.1997, pag. 31.

2.2.1.8.	Tipo di alloggiamento del o dei convertitori catalitici:
2.2.1.9.	Posizione del o dei convertitori catalici (ubicazione e distanza di riferimento nel condotto di scarico):
2.2.2.	Sensore di ossigeno: sì/no (¹)
2.2.2.1.	Tipo:
2.2.3.	Iniezione di aria: sì/no (¹)
2.2.3.1.	Tipo (aria pulsata, pompa per aria, ecc.):
2.2.4.	EGR: sì/no (¹)
2.2.4.1.	Caratteristiche (portata, ecc.):
2.2.5.	Trappola del particolato: sì/no (¹)
2.2.5.1.	Dimensioni, forma e capacità della trappola del particolato:
2.2.5.2.	Tipo e progetto della trappola del particolato:
2.2.5.3.	Ubicazione (distanza di riferimento nel condotto di scarico):
2.2.5.4.	Metodo o sistema di rigenerazione, descrizione e/o disegno:
2.2.6.	Altri sistemi: sì/no (¹)
2.2.6.1.	Descrizione e funzionamento:
3.	Alimentazione del combustibile
3.1.	Motori diesel
3.1.1.	Pompa di alimentazione
	Pressione (²): kPa o diagramma caratteristico (¹):
3.1.2.	Sistema di iniezione
3.1.2.1.	Pompa
3.1.2.1.1.	Marca/marche:
3.1.2.1.2.	Tipo/i:
3.1.2.1.3.	Mandata: mm³ (²) per corsa al regime di giri al min a iniezione massima, o diagramma caratteristico (¹) (²):
	Indicare il metodo utilizzato: su motore/su banco prova pompe (¹)
	Se dotato di controllo della sovralimentazione, specificare la mandata di combustibile e la pressione di sovralimentazione caratteristiche in funzione del regime.
3.1.2.1.4.	Anticipo dell'iniezione
3.1.2.1.4.1.	Curva dell'anticipo dell'iniezione (2):
3.1.2.1.4.2.	Fasatura statica di iniezione (²):
3.1.2.2.	Condotti di iniezione
3.1.2.2.1.	Lunghezza: mm
3.1.2.2.2.	Diametro interno: mm
3.1.2.3.	Iniettore/i
3.1.2.3.1.	Marca/marche:
3.1.2.3.2.	Tipo/i:
3.1.2.3.3.	«Pressione di apertura» kPa (²) o diagramma caratteristico (¹) (²):

⁽¹) Cancellare le diciture inutili.(²) Specificare la toleranza.

3.1.2.4.	Regolatore
3.1.2.4.1.	Marca/marche:
3.1.2.4.2.	Tipo/i:
3.1.2.4.3.	Regime di inizio dell'interruzione a pieno carico: giri/mi
3.1.2.4.4.	Regime massimo a vuoto: giri/mi
3.1.2.4.5.	Regime al minimo: giri/mi
3.1.3.	Sistema di avviamento a freddo
3.1.3.1.	Marca/marche:
3.1.3.2.	Tipo/i:
3.1.3.3.	Descrizione:
3.1.3.4.	Dispositivo ausiliario di avviamento:
3.1.3.4.1.	Marca:
3.1.3.4.2.	Tipo:
3.2.	Motori a gas (¹)
3.2.1.	Combustibile: gas naturale/GPL (²)
3.2.2.	Regolatore/i di pressione o vaporizzatore/regolatore/i di pressione (²)
3.2.2.1.	Marca/marche:
3.2.2.2.	Tipo/i:
3.2.2.3.	Numero degli stadi di riduzione della pressione:
3.2.2.4.	Pressione nello stadio finale: min kPa, max kP
3.2.2.5.	Numero dei punti di regolazione principali:
3.2.2.6.	Numero di punti di regolazione del minimo:
3.2.2.7.	Numero di certificazione 1999/96/CE:
3.2.3.	Sistema di alimentazione: unità di miscelazione/iniezione di gas/iniezione di liquido/iniezione diretta (²)
3.2.3.1.	Regolazione del titolo della miscela:
3.2.3.2.	Descrizione del sistema e/o diagramma e disegni:
3.2.3.3.	Numero di certificazione 1999/96/CE:
3.2.4.	Unità di miscelazione
3.2.4.1.	Numero:
3.2.4.2.	Marca/marche:
3.2.4.3.	·
	Tipo/i:
3.2.4.4.	Tipo/i:
3.2.4.4. 3.2.4.5.	
	Ubicazione:
3.2.4.5.	Ubicazione:
3.2.4.5. 3.2.4.6.	Ubicazione:
3.2.4.5. 3.2.4.6. 3.2.5.	Ubicazione:

⁽¹) Nel caso di sistemi conformi ad uno schema differente, fornire informazioni equivalenti (per il punto 3.2). (²) Cancellare le diciture inutili.

base: % moli; min. moli; max. % moli

gas inerti (N2, He, ecc.): base: % moli; min. moli; max. % moli

ossigeno (O2):

⁽¹⁾ Cancellare le diciture inutili.

⁽²⁾ Specificare la tolleranza.

Iniettore/i
Marca/marche:
Tipo/i:
Altre (se del caso)
Variante 2
(solo nel caso di omologazione per varie composizioni specifiche di combustibile)
Distribuzione
Alzata massima e angoli di apertura e chiusura riferiti ai punti morti o dati equivalenti:
Intervalli di riferimento e/o di regolazione (¹):
Sistema di accensione (solo motori con accensione a scintilla)
Tipo di sistema di accensione: bobina comune e candele/bobina singola e candele/bobina sulla candela/altro (specificare) (¹)
Unità di comando dell'accensione
Marca/marche:
Tipo/i:
Curva/mappa dell'anticipo di accensione (1) (2):
Fasatura dell'accensione (²): gradi prima del punto morto superiore ad un regime di kPa
Candele
Marca/marche:
Tipo/i:
Distanza tra gli elettrodi: mm
Bobina/e di accensione
Marca/marche:
Tipo/i:

⁽¹) Cancellare le diciture inutili.(²) Specificare la tolleranza.

Appendice 4

CARATTERISTICHE DELLE PARTI DEL VEICOLO CORRELATE AL MOTORE

1.	Depressione del sistema di aspirazione al regime nominale e al 100% di carico:	kPa
2.	Contropressione del sistema di scarico al regime nominale e al 100% di carico:	kPa
3.	Volume del sistema di scarico:	dm³
4.	Potenza assorbita dai dispositivi ausiliari occorrenti per il funzionamento del motore come specifica	to e

Potenza assorbita dai dispositivi ausiliari occorrenti per il funzionamento del motore come specificato e alle condizioni operative previste nella direttiva $80/1269/\text{CEE}\,(^1)$, modificata da ultimo dalla direttiva $97/21/\text{CE}\,(^2)$, allegato I, punto 5.1.1.

	Potenza assorbita (kW) a vari regimi						
Apparecchiature	Minimo	Basso regime	Alto regime	Regime A (¹)	Regime B (¹)	Regime C (¹)	Regime di riferi- mento (²)
P(a)							
Ausiliari occorrenti per il funzionamento del motore (da sottrarre dalla potenza del motore misurata)							
(vedi punto 6.1 dell'appendice 1)							

⁽¹) Prova ESC. (²) Solo prova ETC.

⁽¹) GU L 375 del 31.12.1980, pag. 46. (²) GU L 125 del 16.5.1997, pag. 31.

ALLEGATO III

PROCEDIMENTO DI PROVA

INTRODUZIONE

- 1.1. Il presente allegato descrive i metodi per la determinazione delle emissioni di componenti gassosi, particolato e fumo prodotti dai motori sottoposti a prova. Sono descritti tre cicli di prova da applicarsi secondo le disposizioni dell'allegato I, punto 6.2:
 - ESC, che è costituito da un ciclo in 13 modi a regime dinamico stazionario,
 - ELR che è costituito da una sequenza di aumenti di carico a gradino a differenti velocità costanti del motore che sono parte integrante di un procedimento di prova e vengono eseguiti in successione immediata:
 - ETC che è costituito da una sequenza di modi in regime transitorio normalizzati secondo per secondo.
- 1.2. La prova viene eseguita con il motore montato su banco di prova e collegato a un banco dinamometrico.

1.3. Principio di misura

Le emissioni da misurare prodotte dallo scarico del motore includono i componenti gassosi (monossido di carbonio, idrocarburi totali per i motori diesel nella sola prova ESC; idrocarburi diversi dal metano per i motori diesel e a gas nella sola prova ETC; metano per i motori a gas nella sola prova ETC e ossidi di azoto), il particolato (solo motori diesel) e il fumo (motori diesel nella sola prova ELR). Inoltre, si usa spesso il biossido di carbonio come gas tracciante per determinare il rapporto di diluizione dei sistemi a diluizione del flusso parziale del flusso totale. La buona pratica ingegneristica raccomanda la misurazione generale del biossido di carbonio come eccellente strumento per individuare problemi di misurazione durante l'esecuzione della prova.

1.3.1. Prova ESC

Durante una sequenza prescritta di condizioni di funzionamento del motore a caldo, si esaminano in continuo le emissioni allo scarico di cui sopra prelevando un campione dal gas di scarico grezzo. Il ciclo di prova è costituito da un certo numero di modalità di regime e di potenza che coprono l'intervallo tipico di funzionamento dei motori diesel. Durante ciascuna modalità, determinare la concentrazione di ciascun inquinante gassoso, il flusso di scarico e la potenza al freno, ponderando i valori misurati. Diluire il campione di particolato con aria ambiente condizionata. Prelevare un unico campione durante l'intero procedimento di prova raccogliendolo su filtri adatti. Calcolare i grammi di ciascun inquinante emesso per kilowattora come descritto nell'appendice 1 del presente allegato. Misurare inoltre gli NO_x in tre punti all'interno dell'area di controllo scelta dal servizio tecnico (¹) e confrontare i valori misurati con i valori calcolati dalle modalità del ciclo di prova che inviluppano i punti di prova scelti. La verifica del controllo degli NO_x garantisce l'efficacia del controllo delle emissioni del motore nell'intervallo tipico di funzionamento del motore.

1.3.2. Prova ELR

Si misura mediante un opacimetro il fumo emesso a caldo da un motore durante una prova di risposta a carichi prescritti. La prova consiste nel sottoporre il motore, a velocità costante, a un carico dal 10% al 100% a tre differenti regimi. La prova deve inoltre venire eseguita a un quarto gradino di carico scelto dal servizio tecnico (¹), confrontando il valore con i valori dei gradini di carico precedenti. Determinare il picco del fumo usando un algoritmo di calcolo della media come descritto nell'appendice 1 del presente allegato.

⁽¹⁾ I punti di prova devono essere scelti utilizzando metodi statistici di randomizzazione approvati.

1.3.3. Prova ETC

IT

Durante un ciclo transiente prescritto di condizioni di funzionamento a caldo del motore, basato strettamente su condizioni di guida stradale specifiche di motori per veicoli pesanti installati su autocarri e autobus, si determinano gli inquinanti di cui sopra dopo avere diluito il gas di scarico totale con aria ambiente condizionata. Integrando la potenza rispetto al tempo del ciclo, utilizzando i segnali di retro-azione di coppia motrice e velocità del banco dinamometrico collegato al motore, si ottiene il lavoro prodotto dal motore durante il ciclo. Determinare la concentrazione di NO_x e HC sulla durata del ciclo mediante integrazione del segnale dell'analizzatore. La concentrazione di CO, CO₂, e NMHC può venire determinata mediante integrazione del segnale dell'analizzatore o mediante campionamento con sacchetto. Per il particolato, raccogliere su filtri adatti un campione proporzionale. Determinare la portata del gas di scarico diluito sulla durata del ciclo per calcolare i valori massici di emissione degli inquinanti. Dalla relazione tra i valori massici delle emissioni e il lavoro del motore si ottengono i grammi di ciascun inquinante emessi per kilowattora, come descritto nell'appendice 2 del presente allegato.

2. CONDIZIONI DI PROVA

2.1. Condizioni di prova del motore

- 2.1.1. Misurare la temperatura assoluta (T_a) dell'aria di alimentazione del motore espressa in Kelvin, e la pressione atmosferica riferita al secco (p_s), espressa in kPa, e determinare il parametro F come segue:
 - a) per motori diesel:

Motori ad aspirazione naturale e con sovralimentatore meccanico:

$$F = \left(\frac{99}{p_s}\right) * \left(\frac{T_a}{298}\right)^{0,7}$$

Motori turbocompressi, con o senza raffreddamento dell'aria aspirata:

$$F = \left(\frac{99}{p_s}\right)^{0,7} * \left(\frac{T_a}{298}\right)^{1,5}$$

b) per motori a gas:

$$F = \left(\frac{99}{p_s}\right)^{1,2} * \left(\frac{T_a}{298}\right)^{0,6}$$

2.1.2. Validità della prova

Perché una prova sia riconosciuta valida, il parametro F deve soddisfare la relazione:

$$0.96 \le F \le 1.06$$

2.2. Motori con raffreddamento dell'aria di alimentazione

Registrare la temperatura dell'aria di alimentazione che, al regime della potenza massima dichiarata e a pieno carico, deve coincidere entro ± 5 K con la temperatura massima dell'aria di alimentazione specificata nell'allegato II, appendice 1, punto 1.16.3. La temperatura del fluido di raffreddamento non deve essere minore di 293 K (20°C).

Se si usa un impianto di condizionamento dell'aria di alimentazione proprio della sala prova o un ventilatore estraneo al motore in prova, la temperatura dell'aria di alimentazione, al regime della potenza massima dichiarata e a pieno carico, deve coincidere entro ± 5 K con la temperatura massima dell'aria di alimentazione specificata nell'allegato II, appendice 1, punto 1.16.3. Usare per tutto il ciclo di prova la regolazione del dispositivo di raffreddamento dell'aria di sovralimentazione necessaria per rispettare le condizioni di cui sopra, senza modificarle.

2.3. Sistema di aspirazione aria del motore

Usare un sistema di aspirazione aria del motore che presenti una limitazione dell'aspirazione d'aria coincidente entro ± 100 Pa con il limite superiore del motore funzionante al regime di potenza massima dichiarata e a pieno carico.

2.4. Sistema di scarico del motore

Usare un sistema di scarico che presenti una contropressione allo scarico coincidente entro ± 1 000 Pa con il limite superiore del motore funzionante al regime di potenza massima dichiarata e a pieno carico e un volume coincidente entro ± 40 % con quello specificato dal costruttore. Si può usare un impianto di estrazione dei gas di scarico proprio della sala prova purché rappresenti le condizioni effettive di funzionamento del motore. Il sistema di scarico deve essere conforme ai requisiti di campionamento dei gas di scarico presentati nell'allegato III, appendice 4, punto 3.4 e nell'allegato V, punto 2.2.1, EP e punto 2.3.1. EP.

Se il motore è equipaggiato di un dispositivo di post-trattamento dello scarico, il condotto di scappamento deve avere lo stesso diametro di quello utilizzato per almeno 4 diametri del condotto a monte dell'ingresso dell'inizio della sezione di espansione che contiene il dispositivo di post-trattamento. La distanza dalla flangia del collettore di scarico o dall'uscita del turbocompressore al dispositivo di post-trattamento dello scarico deve essere uguale a quella utilizzata nella configurazione del veicolo o compresa entro le specifiche di distanza del costruttore. La contropressione o la limitazione allo scarico deve seguire gli stessi criteri di cui sopra e può venire regolata con una valvola. Il contenitore di post-trattamento può venire rimosso durante prove preparatorie e durante la mappatura del motore e sostituito con un contenitore equivalente avente un supporto del catalizzatore inattivo.

2.5. Sistema di raffreddamento

Usare un sistema di raffreddamento del motore avente una capacità sufficiente per mantenere il motore alle temperature di funzionamento normali prescritte dal costruttore.

2.6. Olio lubrificante

Le specifiche dell'olio lubrificante usato per la prova devono essere registrate e presentate con i risultati della prova come specificato nell'allegato II, appendice 1, punto 7.1.

2.7. Combustibile

Il combustibile è quello di riferimento specificato nell'allegato IV.

La temperatura del combustibile e il punto di misurazione devono essere specificati dal costruttore entro i limiti indicati nell'allegato II, appendice 1, punto 1.16.5. La temperatura del combustibile non deve essere inferiore a 306 K (33 °C). Se non è specificata, deve essere di 311 K \pm 5 K (38 °C \pm 5 °C) all'ingresso dell'alimentazione del combustibile.

Per i motori a GN e GPL, la temperatura del combustibile e il punto di misurazione devono rispettare i limiti indicati nell'allegato II, appendice 1, punto 1.16.5 o nell'allegato II, appendice 3, punto 1.16.5 se il motore non è capostipite.

2.8. Controllo dei sistemi di post-trattamento dello scarico

Se il motore è provvisto di un sistema di post-trattamento dello scarico, le emissioni misurate sul ciclo o sui cicli di prova devono essere rappresentative delle emissioni sul campo. Se questo non può essere ottenuto con un singolo ciclo di prova (p. es. per filtri del particolato con rigenerazione periodica), condurre più cicli di prova e fare una media e/o ponderazione dei risultati delle prove. La procedura esatta deve essere concordata tra il costruttore del motore e il servizio tecnico sulla base di criteri di buona ingegneristica.

Appendice 1

CICLI DI PROVA ESC E ELR

1. REGOLAZIONI DEL MOTORE E DEL BANCO DINAMOMETRICO

1.1 Determinazione dei regimi A, B e C del motore

I regimi A, B e C devono essere dichiarati dal costruttore in conformità delle seguenti disposizioni:

Il regime elevato n_{hi} viene determinato calcolando il 70% della potenza netta P(n) massima dichiarata come viene determinata nell'allegato II, appendice 1, punto 8.2. Il regime più elevato al quale si ottiene questo valore di potenza sulla curva della potenza è definito n_{hi} .

Il regime basso n_{lo} viene determinato calcolando il 50% della potenza netta P(n) massima dichiarata, come determinata nell'allegato II, appendice 1, punto 8.2. Il regime minimo al quale si ottiene questo valore di potenza sulla curva della potenza è definito n_{lo} .

I regimi A, B e C vengono calcolati come segue:

Regime A =
$$n_{lo}$$
 + 25 % (n_{hi} - n_{lo})

Regime B =
$$n_{lo}$$
 + 50 % (n_{hi} - n_{lo})

Regime C =
$$n_{lo}$$
 + 75 % (n_{hi} - n_{lo})

I regimi A, B e C possono venire verificati mediante uno dei seguenti metodi:

- a) Per una determinazione accurata di n_{hi} e n_{lo} , effettuare la misura su punti di prova addizionali durante l'omologazione della potenza del motore secondo la direttiva 80/1269/CEE. La potenza massima, n_{hi} e n_{lo} determinati dalla curva di potenza e i regimi A, B e C del motore vengono calcolati secondo le disposizioni di cui sopra.
- b) Mappare il motore lungo la curva di pieno carico, dal regime massimo a vuoto al regime minimo, utilizzando almeno 5 punti di misurazione per ogni intervallo di 1000 giri al minuto e punti di misurazione entro ±50 giri/min del regime alla potenza massima dichiarata. La potenza massima, n_{hi} e n_{lo} vengono determinati da questa curva di mappatura e i regimi A, B e C del motore vengono calcolati secondo le disposizioni di cui sopra.

Se i regimi A, B e C misurati coincidono entro $\pm 3\%$ con i regimi dichiarati dal costruttore, per la prova delle emissioni usare i regimi dichiarati. Se per qualsiasi regime del motore viene superata la tolleranza, per la prova delle emissioni usare i regimi misurati.

1.2. Determinazione delle regolazioni del banco dinamometrico

Determinare sperimentalmente la curva di coppia a pieno carico per calcolare i valori della coppia per le modalità di prova specificate in condizioni nette, come specificato nell'allegato II, appendice 1, punto 8.2. Tener conto, se applicabile, della potenza assorbita dalle apparecchiature azionate dal motore. Calcolare la regolazione del banco dinamometrico per ciascuna modalità di prova usando la formula:

$$s = P(n) * \frac{L}{100}$$
 se la prov

se la prova viene eseguita sul motore allestito in condizioni che richiedano l'erogazione effettiva della potenza netta

$$s = P(n) * \frac{L}{100} + \left(P(a) - P(b)\right) \text{ se la prova non viene eseguita sul motore allestito in condizioni che richiedano l'erogazione effettiva di una potenza diversa dalla potenza netta$$

dove:

s = regolazione del banco dinamometrico, kW

P(n) = potenza netta del motore secondo quanto indicato nell'allegato II, appendice 1, punto 8.2,

L = carico percentuale indicato al punto 2.7.1, %

P(a) = potenza assorbita dai dispositivi ausiliari da installare come indicato nell'allegato II, appendice 1, punto 6.1

P(b) = potenza assorbita dai dispositivi ausiliari da rimuovere come indicato nell'allegato II, appendice 1, punto 6.2

2. ESECUZIONE DELLA PROVA ESC

Su richiesta del costruttore si può eseguire una prova preliminare per condizionare il motore e il sistema di scarico prima del ciclo di misurazione.

2.1. Preparazione dei filtri di campionamento

Almeno un'ora prima della prova, ciascuno dei due filtri viene introdotto in una scatola di Petri chiusa ma non sigillata e posta in una camera di pesata per la stabilizzazione. Al termine del periodo di stabilizzazione, ciascun filtro/coppia di filtri viene pesato e se ne registra la tara. Il filtro viene poi conservato in una scatola di Petri chiusa o in un portafiltri sigillato fino al momento della prova. Se il filtro non viene utilizzato entro otto ore dalla rimozione della camera di pesata, deve essere condizionato e pesato nuovamente prima dell'uso.

2.2. Installazione dell'apparecchiatura di misurazione

La strumentazione e le sonde di campionamento devono essere installate come prescritto. Quando si utilizza un sistema di diluizione a flusso pieno per la diluizione dei gas di scarico, il condotto di scarico deve essere collegato al sistema.

2.3. Avviamento del sistema di diluizione e del motore

Il sistema di diluizione e il motore vengono avviati e riscaldati fino alla stabilizzazione di tutte le temperature e le pressioni al regime di potenza massima secondo le raccomandazioni del costruttore e la buona pratica ingegneristica.

2.4. Avviamento del sistema di campionamento del particolato

Il sistema di campionamento del particolato viene avviato e fatto funzionare in derivazione (bypass). Il livello di fondo del particolato dell'aria di diluizione può essere determinato facendo passare aria di diluizione attraverso i filtri del particolato. Se si usa aria di diluizione filtrata, si può effettuare una misurazione unica prima o dopo la prova. Se l'aria di diluizione non è filtrata, si possono eseguire misure all'inizio e al termine del ciclo e calcolare la media dei valori.

2.5. Regolazione del rapporto di diluizione

L'aria di diluizione deve avere caratteristiche tali che la temperatura del gas di scarico diluito immediatamente a monte del filtro principale non superi i 325 K (52°C) in alcuna modalità. Il rapporto di diluizione (q) non deve essere minore di 4.

Sui sistemi in cui si usa la misurazione della concentrazione di CO_2 o NO_x per il controllo del rapporto di diluizione, misurare il contenuto di CO_2 o NO_x dell'aria di diluizione all'inizio e al termine di ciascuna prova. Le concentrazioni di fondo di CO_2 o NO_x misurate nell'aria di diluizione prima e dopo la prova devono corrispondere con una differenza massima di 100 ppm o 5 ppm, rispettivamente, una dall'altra.

2.6. Controllo degli analizzatori

Gli analizzatori delle emissioni devono essere azzerati e calibrati.

2.7. Ciclo di prova

2.7.1. Nel funzionamento al banco dinamometrico del motore di prova, utilizzare il seguente ciclo di 13 modalità:

Modalità numero	Regime motore	Carico percentuale	Fattore di ponderazione	Durata della modalità
1	minimo	_	0,15	4 minuti
2	A	100	0,08	2 minuti
3	В	50	0,10	2 minuti
4	В	75	0,10	2 minuti
5	A	50	0,05	2 minuti
6	A	75	0,05	2 minuti
7	A	25	0,05	2 minuti
8	В	100	0,09	2 minuti
9	В	25	0,10	2 minuti
10	С	100	0,08	2 minuti
11	С	25	0,05	2 minuti
12	С	75	0,05	2 minuti
13	С	50	0,05	2 minuti

2.7.2. Sequenza di prova

Avviare la sequenza di prova. La prova viene eseguita in ordine di numero delle modalità secondo quanto specificato al punto 2.7.1.

Il motore deve essere fatto funzionare per il tempo prescritto in ciascuna modalità, completando le variazioni di regime e di carico nei primi 20 secondi. Il regime specificato deve venire mantenuto con un'approssimazione di ± 50 giri/minuto e la coppia specificata deve essere mantenuta con un'approssimazione di $\pm 2\%$ della coppia massima al regime di prova.

Su richiesta del costruttore, la sequenza di prova può venire ripetuta un numero di volte sufficiente per campionare una maggior massa di particolato sul filtro. Il costruttore deve fornire una descrizione dettagliata delle procedure di valutazione e di calcolo dei dati. Le emissioni gassose vengono determinate solo nel primo ciclo.

2.7.3. Risposta dell'analizzatore

I dati forniti dagli analizzatori vengono registrati su un registratore scrivente o misurati con un sistema equivalente di acquisizione dei dati mentre il gas di scarico fluisce attraverso gli analizzatori per tutta la durata del ciclo di prova.

2.7.4. Campionamento del particolato

Per la procedura di prova completa usare una coppia di filtri (filtri primario e di sicurezza, vedi allegato III, appendice 4). Tenere conto dei fattori modali ponderali specificati nella procedura del ciclo di prova prelevando un campione proporzionale alla portata massica dello scarico durante ciascuna singola modalità del ciclo. A questo scopo si può regolare la portata del campione, il tempo di campionamento e/o il rapporto di diluizione in modo opportuno per rispettare i limiti posti al valore numerico dei fattori di ponderazione effettivi indicato al punto 5.6.

Il tempo di campionamento per ogni modalità deve essere di almeno 4 secondi per 0,01 fattore di ponderazione. Eseguire il campionamento il più tardi possibile all'interno di ciascuna modalità. Il campionamento del particolato deve venire completato non più di 5 secondi prima del termine di ciascuna modalità.

2.7.5. Condizioni del motore

Durante ciascuna modalità, registrare il regime e il carico del motore, la temperatura e la depressione dell'aria di aspirazione, la temperatura e la contropressione allo scarico, la portata di combustibile e la portata d'aria o di scarico, la temperatura dell'aria di sovralimentazione, la temperatura del combustibile e la sua umidità rispettando, durante il tempo di campionamento del particolato, le prescrizioni di regime e di carico (vedi punto 2.7.2), ma in ogni caso durante l'ultimo minuto di ciascuna modalità.

Registrare qualsiasi dato ulteriore occorrente per il calcolo (vedi punti 4 e 5).

2.7.6. Controllo di NO_x entro l'area di controllo

La verifica dei NO_x all'interno dell'area di controllo deve essere eseguita immediatamente dopo il completamento della modalità 13. Condizionare il motore nella modalità 13 per un periodo di 3 minuti prima di iniziare le misurazioni. Effettuare tre misurazioni in differenti punti entro l'area di controllo scelti dal servizio tecnico (1). La durata di ciascuna misurazione è di 2 minuti.

La procedura di misurazione è uguale alla misurazione di NO_x nel ciclo a 13 modalità e viene condotta in conformità dei punti 2.7.3, 2.7.5, e 4.1 della presente appendice, e dell'allegato III, appendice 4, punto 3

Il calcolo viene eseguito secondo il punto 4.

2.7.7. Controllo degli analizzatori al termine della prova

Dopo il controllo delle emissioni, l'analizzatore viene ricontrollato con un gas di azzeramento e con lo stesso gas di calibrazione. La prova è considerata accettabile se la differenza tra i risultati prima e dopo la prova è minore del 2% del valore relativo al gas di calibrazione.

3. ESECUZIONE DELLA PROVA ELR

3.1. Installazione delle apparecchiature di misurazione

L'opacimetro e le sonde del campione, se applicabile, devono essere installati a valle della marmitta o di eventuali dispositivi di post-trattamento, se presenti, secondo le procedure generali di installazione specificate dal costruttore dello strumento. Rispettare inoltre, se del caso, le prescrizioni del punto 10 della norma ISO IDS 11614.

Prima dei controlli di zero e fondo scala, riscaldare e stabilizzare l'opacimetro secondo le raccomandazioni del fabbricante dello strumento. Se l'opacimetro è dotato di un sistema di aria di spurgo per evitare che il gruppo ottico di misurazione si sporchi di fuliggine, attivare anche questo sistema e regolarlo secondo le raccomandazioni del costruttore.

3.2. Controllo dell'opacimetro

I controlli di zero e fondo scala devono essere eseguiti nella modalità di lettura dell'opacità perché la scala dell'opacità offre due punti di taratura definibili con precisione, cioè $0\,\%$ di opacità e $100\,\%$ di opacità. Il coefficiente di assorbimento della luce viene poi calcolato in modo corretto sulla base dell'opacità misurata e del valore di L_A , fornito dal costruttore dell'opacimetro, quando lo strumento viene riportato nella modalità di lettura k per l'esecuzione della prova.

Senza intercettazione del raggio di luce dell'opacimetro, regolare il valore letto su $0.0\% \pm 1.0\%$ di opacità. Impedendo che la luce raggiunga il ricevitore, regolare la lettura su $100.0\% \pm 1.0\%$ di opacità.

3.3. Ciclo di prova

3.3.1. Condizionamento del motore

Il riscaldamento del motore e del sistema deve essere eseguito alla potenza massima per stabilizzare i parametri del motore secondo le raccomandazioni del costruttore. La fase di precondizionamento dovrebbe inoltre proteggere la vera e propria misurazione dall'influenza di depositi rimasti nel sistema di scarico da una prova precedente. Quando il motore è stabilizzato, avviare il ciclo entro 20 ± 2 s dopo la fase di precondizionamento. Su richiesta del costruttore si può eseguire una prova senza valore per un condizionamento ulteriore prima del ciclo di misurazione.

⁽¹⁾ I punti di prova devono essere scelti utilizzando metodi statistici di randomizzazione approvati.

La prova è costituita da una sequenza di tre gradini di carico a ciascuno dei tre regimi A (ciclo 1), B (ciclo 2) e C (ciclo 3) determinati secondo l'allegato III, punto 1.1, a cui segue il ciclo 4 ad un regime compreso nell'area di controllo e ad un carico tra il 10% e il 100%, scelto dal servizio tecnico (1). Nel

funzionamento del motore di prova al banco dinamometrico procedere secondo la sequenza mostrata in figura 3.

Figura 3 Sequenza della prova ELR

Regime Ciclo 4 Ciclo 1 Ciclo 2 Ciclo 3 C Punto selezionato В Α 100% Carico 10%

- Far funzionare il motore al regime A e al 10% di carico per 20 ± 2 s. Rispettare il regime specificato entro ± 20 giri/min e la coppia specificata entro ± 2% della coppia massima al regime di prova.
- Al termine di un segmento spostare rapidamente la leva di comando nella posizione di apertura totale e mantenerla in tale posizione per 10 ±1 s. Applicare il carico dinamometrico necessario per mantenere il regime del motore entro ±150 giri/min per i primi 3 secondi ed entro ±20 giri/min per il resto del segmento.
- Ripetere due volte la sequenza descritta alle lettere a) e b).
- Al completamento del terzo gradino di carico, regolare il motore sul regime B e sul 10% di carico entro 20 ± 2 s.
- Eseguire la sequenza da a) a c) con il motore funzionante al regime B.
- f) Al completamento del terzo gradino di carico, regolare il motore sul regime C e il 10% di carico entro 20 ± 2 s.
- Eseguire la sequenza da a) a c) con il motore funzionante al regime C.
- Al completamento del terzo gradino di carico, regolare il motore sul regime e su qualunque carico superiore al 10% entro 20 ± 2 s.
- Eseguire la sequenza da a) a c) con il motore funzionante al regime scelto.

3.4. Convalida del ciclo

Le deviazioni standard relative dei valori medi di fumo a ciascun regime di prova (A, B, C) devono essere minori della cifra più alta tra il 15% del valore medio corrispondente (SVA, SVB, SVC, calcolati secondo il punto 6.3.3 della presente appendice da tre gradini successivi di carico a ciascun regime di prova) e il 10% del valore limite mostrato in tabella 1 dell'allegato I. Se la differenza è maggiore ripetere la sequenza fino a quando tre gradini di carico successivi sono conformi ai criteri di convalida.

⁽¹⁾ I punti di prova devono essere scelti utilizzando metodi statistici di randomizzazione approvati.

3.5. Controllo dell'opacimetro al termine della prova

La deriva dello zero dell'opacimetro dopo la prova non deve essere superiore al $\pm 5,0\%$ del valore limite mostrato in l'allegato I, tabella 1.

4. CALCOLO DELLE EMISSIONI GASSOSE

4.1. Valutazione dei dati

Per la valutazione delle emissioni gassose, calcolare la media dei valori relativi agli ultimi 30 secondi di ciascuna modalità letti sul registratore e determinare le concentrazioni (conc) medie di HC, CO e NO_x durante ciascuna modalità in base alla media dei valori registrati e ai corrispondenti dati di taratura. Si può usare un differente tipo di registrazione purché assicuri un'acquisizione equivalente dei dati.

Per la verifica di NO_x all'interno dell'area di controllo, le prescrizioni di cui sopra valgono solo per NO_x.

Il flusso del gas di scarico G_{EXHW} o il flusso del gas di scarico diluito G_{TOTW} , se usato in alternativa, viene determinato secondo l'allegato III, appendice 4, punto 2.3.

4.2. Correzione secco/umido

Convertire la concentrazione misurata nel valore su umido secondo le formule seguenti, salvo che sia già stata misurata su umido.

 $conc (umido) = K_w * conc (secco)$

Per il gas di scarico secco:

$$K_{W,r} = \left(1 - F_{FH} * \frac{G_{FUEL}}{G_{AIRD}}\right) - K_{W2}$$

e

$$F_{FH} = \frac{1,969}{\left(1 + \frac{G_{FUEL}}{G_{AIRW}}\right)}$$

Per il gas di scarico diluito:

$$K_{W,e,1} = \left(1 - \frac{\text{HTCRAT} * \text{CO}_2 \% \text{ (umido)}}{200}\right) - K_{W1}$$

o

$$K_{W,e,2} = \left(\frac{(1 - K_{W1})}{1 + \frac{\text{HTCRAT} * \text{CO}_2 \% (\text{secco})}{200}}\right)$$

Per l'aria di diluizione

Per l'aria di aspirazione (se differente dall'aria di diluizione)

$$K_{W,d} = 1 - K_{W1} \label{eq:kwd}$$

$$K_{\mathrm{W},a} = 1 - K_{\mathrm{W2}}$$

$$K_{W1} = \frac{1,608*H_d}{1~000 + (1,608*H_d)}$$

$$K_{W2} = \frac{1,\!608*H_a}{1\ 000 + (1,\!608*H_a)}$$

$$H_d = \frac{6,220 * R_d * p_d}{p_B - p_d * R_d * 10^{-2}}$$

$$H_a = \frac{6,220 * R_a * p_a}{p_B - p_a * R_a * 10^{-2}}$$

dove:

 H_a , H_d = g d'acqua per kg di aria secca

R_d, R_a = umidità relativa dell'aria di diliuzione/aspirazione, %

p_d, p_a = pressione di vapore di saturazione dell'aria di diluizione/aspirazione, kPa

p_B = pressione barometrica totale, kPa

4.3. Correzione del valore di NO_x in funzione dell'umidità e della temperatura

Poiché l'emissione di NO_x dipende dalle condizioni dell'aria ambiente, la concentrazione di NO_x deve essere corretta per tenere conto della temperatura e dell'umidità dell'aria ambiente mediante i fattori forniti dalle formule seguenti.

$$K_{H,D} = \frac{1}{1 + A*(H_a - 10,71) + B*(T_a - 298)}$$

in cui:

IT

 $A = 0.309 G_{FUEL}/G_{AIRD} - 0.0266$

 $B = -0.209 G_{FUEL}/G_{AIRD} + 0.00954$

T_a = umidità dell'aria di aspirazione, k (la temperatura e l'umidità devono essere misurate alla stessa posizione)

H_a = umidità dell'aria di aspirazione, g d'acqua per kg di aria secca

$$H_{a} = \frac{6,220 * R_{a} * p_{a}}{p_{B} - p_{a} * R_{a} * 10^{-2}}$$

dove

R_a = umidità relativa dell'aria di aspirazione, %

p_a = pressione di vapore di saturazione dell'aria di aspirazione, kPa

 p_B = pressione barometrica totale, kPa

4.4. Calcolo delle portate massiche di emissione

Le portate massiche di emissione (g/h) per ciascuna modalità si calcolano come segue prendendo per la densità del gas di scarico 1,293 kg/m³ a 273 K (0 °C) e 101,3 kPa:

(1)
$$NO_{x \text{ mass}} = 0.001587 * NO_{x \text{ conc}} * K_{H,D} * G_{EXHW}$$

(2)
$$CO_{x \text{ mass}} = 0.000966 * CO_{conc} * G_{EXHW}$$

(3)
$$HC_{mass} = 0.000479 * HC_{conc} * G_{EXHW}$$

dove $NO_{x\ conc}$, CO_{conc} , $HC_{conc}(^1)$ sono le concentrazioni medie (ppm) nel gas di scarico grezzo, come determinato al punto 4.1.

Se, in alternativa, le emissioni gassose vengono determinate con un sistema di diluizione a flusso pieno, applicare le formule seguenti:

(1)
$$NO_{x \text{ mass}} = 0.001587 * NO_{x \text{ conc}} * K_{H,D} * G_{TOTW}$$

(2)
$$CO_{x \text{ mass}} = 0.000966 * CO_{conc} * G_{TOTW}$$

(3)
$$HC_{mass} = 0.000479 * HC_{conc} * G_{TOTW}$$

dove $NO_{x \text{ conc}}$, CO_{conc} , HC_{conc} (1) sono le concentrazioni (ppm) di fondo corrette medie di ciascuna modalità nel gas di scarico diluito determinate secondo l'allegato III, appendice 2, punto 4.3.1.1.

4.5. Calcolo delle emissioni specifiche

La emissioni specifiche (g/kWh) per tutti i singoli componenti vengono calcolate nel modo seguente:

$$\overline{NO_x} = \frac{\sum NO_{x, \; mass} * WF_i}{\sum P(n)_i * WF_i}$$

$$\overline{CO} = \frac{\sum CO_{mass} * WF_i}{\sum P(n)_i * WF_i}$$

$$\overline{HC} = \frac{\sum HC_{mass} * WF_i}{\sum P(n)_i * WF_i}$$

I fattori di ponderazione (WF) utilizzati nel calcolo di cui sopra sono descritti al punto 2.7.1.

⁽¹⁾ Su base C1 equivalente.

4.6. Calcolo dei valori di controllo dell'area

Per i tre punti di controllo scelti secondo il punto 2.7.6, l'emissione di NO_x deve essere misurata e calcolata secondo il punto 4.6.1 e determinata anche mediante interpolazione dalle modalità del ciclo di prova più prossima al rispettivo punto di controllo secondo il punto 4.6.2. Confrontare poi i valori misurati con i valori interpolati secondo il punto 4.6.3.

4.6.1. Calcolo delle emissioni specifiche

Calcolare l'emissione di NO_x per ciascuno dei punti di controllo (Z) nel modo seguente:

$$NO_{x \text{ mass,Z}} = 0.001587 * NO_{x \text{ conc,Z}} * K_{H,D} * G_{EXHW}$$

$$NO_{x,Z} = NO_{x \text{ mass,Z}} / P(n)_{z}$$

4.6.2. Determinazione del valore delle emissioni prodotte nel ciclo di prova

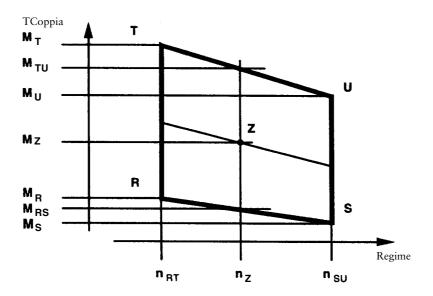
L'emissione di NO_x - per ciascuno dei punti di controllo deve essere interpolata dalle quattro modalità più prossime del ciclo di prova che inviluppano il punto di controllo Z scelto come mostrato in Figura 4. Per queste modalità (R, S, T, U), valgono le seguenti definizioni:

 $\begin{array}{lll} \mbox{Regime (R)} & = \mbox{Regime (T)} = \mbox{n}_{RT} \\ \mbox{Regime (S)} & = \mbox{Regime (U)} = \mbox{n}_{SU} \\ \mbox{Carico percentuale (R)} & = \mbox{Carico percentuale (S)} \\ \mbox{Carico percentuale (T)} & = \mbox{Carico percentuale (U)} \\ \end{array}$

L'emissione di NO_x del punto di controllo Z scelto può venire calcolata come segue:

$$E_Z = E_{RS} + (E_{TU} - E_{RS}) \cdot (M_Z - M_{RS}) / (M_{TU} - M_{RS})$$

e:


$$\begin{split} E_{TU} &= E_T + (E_U - E_T) \cdot (n_Z - n_{RT}) / (n_{SU} - n_{RT}) \\ E_{RS} &= E_R + (E_S - E_R) \cdot (n_Z - n_{RT}) / (n_{SU} - n_{RT}) \\ M_{TU} &= M_T + (M_U - M_T) \cdot (n_Z - n_{RT}) / (n_{SU} - n_{RT}) \\ M_{RS} &= M_R + (M_S - M_R) \cdot (n_Z - n_{RT}) / (n_{SU} - n_{RT}) \end{split}$$

dove:

 E_R , E_S , E_T , E_U = emissione specifica di NO_x delle modalità di inviluppo calcolate secondo il punto 4.6.1

 $\mathrm{M_{R}},\,\mathrm{M_{S}},\,\mathrm{M_{T}},\,\mathrm{M_{U}}~$ = coppia del motore nelle modalità di inviluppo

 ${\it Figura~4}$ Interpolazione del punto di controllo NO $_{\rm x}$

4.6.3. Confronto dei valori di emissione di NO_x

Confrontare l'emissione specifica di NO_x misurata del punto di controllo Z ($NO_{x,Z}$) con il valore interpolato (E_7) nel modo seguente:

$$NO_{x,diff} = 100 * (NO_{x,z} - E_z) / E_z$$

5. CALCOLO DELL'EMISSIONE DI PARTICOLATO

5.1. Valutazione dei dati

IT

Per la valutazione del particolato, registrare per ciascuna modalità le masse totali di campione $(M_{SAM,i})$ che passano attraverso i filtri.

Riportare i filtri nella camera di pesata e condizionarli per almeno un'ora e non più di 80 ore, poi pesarli. Registrare il peso lordo dei filtri e sottrarre la tara (vedi punto 2.1 di questa appendice). La massa M_f del particolato è la somma delle masse di particolato raccolte sui filtri primario e di sicurezza.

Se occorre applicare una correzione del fondo, registrare la massa dell'aria di diluizione (M_{DIL}) che passa attraverso i filtri e la massa del particolato ($M_{\rm d}$). Se è stata effettuata più di una misura, si deve calcolare il quoziente $M_{\rm d}/M_{\rm DIL}$ per ciascuna singola misurazione e determinare poi la media dei valori.

5.2. Sistema di diluizione a flusso parziale

I risultati finali della prova relativa all'emissione di particolato vengono determinati come segue. Poiché si possono usare vari tipi di controllo del grado di diluizione, si seguono differenti metodi di calcolo di G_{EDFW} . Tutti i calcoli devono essere basati sui valori medi delle singole modalità durante il periodo di campionamento.

5.2.1. Sistemi isocinetici

$$G_{EDFW,i} = G_{EXHW,i} * q_i$$

$$q_i = \frac{G_{DILW,1} + (G_{EXHW,i}*r)}{(G_{EXHW,i}*r)}$$

dove r è il rapporto delle aree delle sezioni trasversali della sonda isocinetica e del condotto di scarico:

$$R = \frac{A_p}{A_T}$$

5.2.2. Sistemi con misura della concentrazioni di CO₂ o NO_x

$$G_{EDFW,i} = G_{EXHW,i} * q_i$$

$$q_i = \frac{conc_{E,i} - conc_{A,i}}{conc_{D,i} - conc_{A,i}}$$

dove:

conc_E = concentrazione su umido del gas tracciante nello scarico grezzo

conc_D = concentrazione su umido del gas tracciante nello scarico diluito

 $conc_A$ = concentrazione su umido del gas tracciante nell'aria di diluizione

Le concentrazioni misurate su secco devono essere convertite nel valore su umido conformemente al punto 4.2 della presente appendice.

5.2.3. Sistemi con misura di CO₂ e metodo del bilancio del carbonio (¹)

$$G_{EDFW,i} = \frac{206,5 * G_{FUEL,i}}{CO_{2D,i} - CO_{2A,i}}$$

dove:

 CO_{2D} = concentrazione di CO_2 nello scarico diluito

CO_{2A} = concentrazione di CO₂ nell'aria di diluizione

(concentrazioni in % in volume su umido)

⁽¹⁾ Il valore è valido solo per il combustibile di riferimento specificato nell'allegato IV.

Questa equazione è basata sull'assunzione del bilancio del carbonio (gli atomi di carbonio forniti al motore vengono emessi come CO₂) e si deriva come segue:

$$G_{EDFW,i} = G_{EXHW,i} \ast q_i$$

e

$$q_i = \frac{206.5*G_{FUEL,i}}{G_{EXHW,i}*(CO_{2D,i}-CO_{2A,i})} \label{eq:qi}$$

5.2.4. Sistemi con misura del flusso

$$G_{EDFW,i} = G_{EXHW,i} * q_i$$

$$q_i = \frac{G_{TOTW,i}}{(G_{TOTW,i} - G_{DILW,i})}$$

5.3. Sistema di diluizione a flusso pieno

I risultati finali della prova relativa all'emissione di particolato risultano dai seguenti calcoli. Tutti i calcoli devono essere basati sui valori medi delle singole modalità ottenuti durante il periodo di campionamento.

$$G_{EDFW,i} = G_{TOTW,i}$$

5.4. Calcolo della portata massica del particolato

Calcolare la portata massica del particolato come segue:

$$PT_{mass} = \frac{M_f}{M_{SAM}} * \frac{\overline{G_{EDFW}}}{1\ 000}$$

dove:

$$\overline{G_{EDFW}} = \sum_{i=1}^{i=n} G_{EDFW,i} * WF_i$$

$$M_{SAM} = \sum_{i=1}^{i=n} M_{SAM,i} \label{eq:mass}$$

$$i = 1, ... n$$

determinati lungo tutto il ciclo di prova per sommatoria dei valori medi delle singole modalità durante il periodo di campionamento.

La portata massica del particolato può essere corretta per tener conto del fondo come segue:

$$PT_{mass} = \left[\frac{M_f}{M_{SAM}} - \left(\frac{M_d}{M_{DIL}}*\left(\sum_{i=1}^{i=n} \ \left(1 - \frac{1}{DF_i}\right)*WF_i\right)\right)\right]*\frac{\overline{G_{EDFW}}}{1\ 000}$$

Se si effettua più di una misura, sostituire (M_d/M_{DIL}) con $\overline{(M_d/M_{DIL})}$.

 $DF_i = 13.4/(concCO_2 + (concCO + concHC)*10^{-4}))$ per le singole modalità

o

 $DF_i = 13,4/concCO_2$ per le singole modalità

5.5. Calcolo delle emissioni specifiche

Le emissioni di particolato si calcolano nel modo seguente:

$$\overline{PT} = \frac{PT_{mass}}{\sum P(n)_i * WF_i}$$

5.6. Fattore di ponderazione efficace

IT

Il fattore di ponderzione efficace WF_{E,i} per ciascuna modalità si calcola nel modo seguente:

$$WF_{E,i} = \frac{M_{SAM,i} * \overline{G_{EDFW}}}{M_{SAM} * G_{EDFW,i}}$$

Il valore dei fattori di ponderazione efficaci devono coincidere, con un'approssimazione di $\pm 0,003$ ($\pm 0,005$ per la modalità di minimo) con i fattori di ponderazione elencati al punto 2.7.1.

6. CALCOLO DEI VALORI DI FUMO

6.1. Algoritmo di Bessel

Usare l'algoritmo di Bessel per calcolare i valori medi su 1 s dai valori istantanei del fumo, convertiti secondo il punto 6.3.1. L'algoritmo emula un filtro di secondo ordine a basso passaggio e il suo uso richiede calcoli iterativi per determinare i coefficienti. Questi coefficienti sono una funzione del tempo di risposta del sistema opacimetrico e della frequenza di campionamento. Pertanto, ripetere il punto 6.1.1 tutte le volte che il tempo di risposta del sistema e/o la frequenza di campionamento cambiano.

6.1.1. Calcolo del tempo di risposta del filtro e delle costanti di Bessel

Il tempo di risposta di Bessel (t_F) occorrente è una funzione dei tempi di risposta fisica ed elettrica del sistema opacimetrico specificati nell'allegato III, appendice 4, punto 5.2.4, e si calcola mediante la seguente equazione:

$$t_F = \sqrt{1 - \left(t_p^2 + t_e^2\right)}$$

dove:

t_p= tempo fisico di risposta, s

t_e = tempo elettrico di risposta, s

I calcoli per la stima della frequenza di intercettazione del filtro f_c sono basati su un segnale di ingresso a gradino da 0 a 1 in \leq 0,01 s (vedi allegato VII). Il tempo di risposta è definito come il tempo trascorso tra il momento in cui il segnale in uscita di Bessel raggiunge il 10% (t_{10}) e quello in cui raggiunge il 90% (t_{90}) di questa funzione a gradino. Questo valore deve essere ottenuto mediante iterazione su f_c fino a quando si ottiene t_{90} - t_{10} = t_F . La prima iterazione per f_c è data dalla formula seguente:

$$f_c = \pi/(10 \ast t_F)$$

Le costanti di Bessel E e K si calcolano mediante le equazioni seguenti:

$$E = \frac{1}{1 + \Omega * \sqrt{3*D} + D * \Omega^2}$$

$$K = 2 * E * (D * \Omega^2 - 1) - 1$$

dove

D = 0.618034

 $\Delta t = 1/\text{frequenza di campionamento}$

 $\Omega = 1/[\tan(\pi * \Delta t * f_c)]$

6.1.2. Cacolo dell'algoritmo di Bessel

Utilizzando i valori di E e K, calcolare la risposta media di Bessel su 1 s ad un segnale di ingresso a gradino S_i nel modo seguente:

$$Y_i = Y_{i-1} + E*(S_i + 2*S_{i-1} + S_{i-2} - 4*Y_{i-2}) + K*(Y_{i-1} - Y_{i-2})$$

dove:

$$S_{i-2} = S_{i-1} = 0$$

$$S_i = 1$$

$$Y_{i-2} = Y_{i-1} = 0$$

I tempi t_{10} e t_{90} devono essere interpolati. La differenza di tempo tra t_{90} e t_{10} definisce il tempo di risposta t_F per quel valore di f_c . Se il tempo di risposta non è sufficientemente prossimo al tempo di risposta richiesto, continuare l'iterazione fino a quando il tempo effettivo di risposta coincide con un'approssimazione dell'1 % con la risposta prescritta come segue:

$$|(t_{90} - t_{10}) - t_F| \le 0.01 * t_F$$

6.2. Valutazione dei dati

I valori di misura del fumo devono essere campionati con una frequenza minima di 20 Hz.

6.3. **Determinazione del fumo**

6.3.1. Conversione dei dati

Poiché l'unità di misura fondamentale di tutti gli opacimetri è la trasmittanza, per ottenere gli indici di fumo la trasmittanza (t) deve essere convertita nel coefficiente di assorbimento della luce (k) come segue:

$$k = -\frac{1}{L_A}*In\left(1-\frac{N}{100}\right)$$

e

$$N = 100 - \tau$$

dove:

k = coefficiente di assorbimento della luce, m⁻¹

L_A = lunghezza efficace del cammino ottico indicata dal costruttore dello strumento, m

N = opacità, %

 τ = trasmittanza, %.

Applicare la conversione prima di qualsiasi altra elaborazione dei dati.

6.3.2. Calcolo del fumo medio di Bessel

La frequenza di intercettazione f_c corretta è quella che dà luogo al tempo di risposta del filtro t_F prescritto. Una volta determinata questa frequenza mediante il processo iterativo del punto 6.1.1, calcolare le costanti E e K dell'algoritmo di Bessel appropriate. Applicare poi l'algoritmo di Bessel alla registrazione del fumo (valori di K) come descritto al punto 6.1.2:

$$Y_i = Y_{i-1} + E*(S_i + 2*S_{i-1} + S_{i-2} - 4*Y_{i-2}) + K*(Y_{i-1} - Y_{i-2})$$

L'algoritmo di Bessel è di tipo ricorsivo. Pertanto esso richiede dei valori iniziali di ingresso S_{i-1} e S_{i-2} e dei valori iniziali di uscita Y_{i-1} e Y_{i-2} per avviare l'algoritmo. Questi possono essere assunti pari a 0.

Per ciascun gradino di carico dei tre regimi A, B e C, scegliere il valore massimo su 1 s Y_{max} tra i singoli valori Y_i di ciascuna traccia del fumo.

6.3.3. Risultato finale

Gli indici di fumo (SV) medi di ciascun ciclo (regime di prova) si calcolano come segue:

Per il regime di prova A:

$$SV_A = (Y_{max1,A} + Y_{max2,A} + Y_{max3,A})/3$$

Per il regime di prova B:

$$SV_B = (Y_{max1,B} + Y_{max2,B} + Y_{max3,B})/3$$

Per il regime di prova C:

$$SV_C = (Y_{max1,C} + Y_{max2,C} + Y_{max3,C})/3$$

dove:

 Y_{max1} , Y_{max2} , Y_{max3} = indice di fumo medio di Bessel su 1 s più elevato in ciascuno dei tre gradini di carico a gradino.

Il valore finale si calcola come segue:

$$SV = (0.43 * SV_A) + (0.56 * SV_B) + (0.01 * SV_C)$$

Appendice 2

CICLO DI PROVA ETC

1. PROCEDIMENTO DI MAPPATURA DEL MOTORE

1.1. Determinazione dell'intervallo dei regimi di mappatura

Per la generazione dell'ETC sulla cella di prova, il motore deve essere mappato prima di ogni ciclo di prova per determinare la curva della coppia in funzione della velocità. I regimi minimo e massimo di mappatura sono definiti come segue:

regime minimo di mappatura = regime di minimo

regime massimo di mappatura = n_{hi} * 1,02 o, regime al quale la coppia a pieno carico cade a zero; si adotta il valore minore.

1.2. Realizzazione della mappa della potenza del motore

Riscaldare il motore alla potenza massima per stabilizzare i parametri del motore secondo le raccomandazioni del costruttore e la buona pratica ingegneristica. Quando il motore è stabilizzato, determinare la mappa del motore come segue:

- a) togliere il carico al motore e farlo funzionare al minimo;
- far funzionare il motore alla minima velocità di mappatura in condizioni di pieno carico/piena ammissione;
- c) aumentare la velocità del motore ad una media di 8 ± 1 min⁻¹/s dal minimo al massimo regime di mappatura. Registrare la velocità e la coppia ad una frequenza di campionamento di almeno un punto al secondo.

1.3. Generazione della curva di mappatura

Collegare tutti i punti dato registrati al punto 1.2 mediante interpolazione lineare tra i punti. La curva di coppia risultante è la curva di mappatura da usarsi per convertire i valori di coppia normalizzati del ciclo del motore nei valori di coppia effettivi per il ciclo di prova, come descritto al punto 2.

1.4. **Mappatura alternativa**

Se un costruttore ritiene che le tecniche di mappatura di cui sopra non siano sicure o non siano rappresentative di un dato motore, se ne possono usare di alternative. Queste tecniche di mappatura devono soddisfare lo scopo delle procedure di mappatura specificate, cioè determinare la coppia massima disponibile a tutti i regimi del motore raggiunti durante i cicli di prova. Deviazioni dalle tecniche di mappatura specificate nel presente capitolo per motivi di sicurezza o rappresentatività devono essere approvate dal servizio tecnico insieme con la motivazione del loro uso. In nessun caso, tuttavia, si devono usare curve continue discendenti del regime per motori regolati o turbocompressi.

1.5. **Prove ripetitive**

Non è necessario mappare un motore prima di ciascun ciclo di prova. Rimappare un motore prima del ciclo di prova se:

- è trascorso un tempo irragionevole da quando è stata determinata l'ultima mappa, secondo una valutazione ingegneristica, o
- il motore è stato sottoposto a modifiche fisiche o ritarature che potrebbero influire sulle sue prestazioni

2. GENERAZIONE DEL CICLO DI PROVA DI RIFERIMENTO

Il ciclo di prova transiente è descritto nell'appendice 3 del presente allegato. Il ciclo di riferimento si ottiene convertendo nel modo seguente i valori normalizzati di coppia e regime nei valori effettivi.

2.1. Regime effettivo

Denormalizzare il regime usando la seguente equazione:

Regime effettivo =
$$\frac{\% \text{ regime (regime di riferimento - regime di minimo)}}{100}$$
 + regime di minimo

Il regime di riferimento (n_{ref}) corrisponde ai valori di regime al 100% specificati nella tabella della macchina dinamometrica dell'appendice 3. Questo regime è definito come segue (vedi figura 1 dell'allegato I):

$$n_{ref} = n_{lo} + 95 \% * (n_{hi} - n_{lo})$$

dove n_{hi} e n_{lo} sono specificati secondo l'allegato I, punto 2 o determinati secondo l'allegato III, appendice 1, punto 1.1.

2.2. Coppia effettiva

La coppia è normalizzata sulla coppia massima al rispettivo regime. I valori di coppia del ciclo di riferimento devono essere denormalizzati nel modo seguente utilizzando la curva di mappatura determinata secondo il punto 1.3:

Coppia effettiva =
$$\frac{\text{coppia} * \text{coppia massima}}{100}$$

per il rispettivo regime effettivo determinato al punto 2.1.

Per i valori di coppia negativi dei punti di trascinamento («m»), ai fini della generazione del ciclo di riferimento si devono adottare valori denormalizzati determinati in uno dei modi seguenti:

- 40% negativo della coppia positiva disponibile al regime associato;
- mappatura della coppia negativa richiesta per il trascinamento del motore dal regime di mappatura minimo al regime di mappatura massimo;
- determinazione della coppia negativa richiesta per trascinare il motore al minimo e al regime di riferimento e interpolazione lineare tra questi.

2.3. Esempio della procedura di denormalizzazione

Come esempio, verranno denormalizzati i seguenti punti sperimentali:

% regime = 43

% coppia = 82.

Dati i seguenti valori:

regime di riferimento = 2 200 min⁻¹

regime di minimo = 600 min⁻¹

si ottengono

regime effettivo =
$$\frac{43 * (2 \ 200 - 600)}{100} + 600 = 1 \ 288 \ min^{-1}$$

coppia effettiva =
$$\frac{82 * 700}{100}$$
 = 574 Nm

dove la coppia massima osservata dalla curva di mappatura a 1 288 min⁻¹ è pari a 700 Nm.

3. ESECUZIONE DELLA PROVA DELLE EMISSIONI

Su richiesta dei costruttori, si può eseguire una prova senza valore per condizionare il motore e il sistema di scarico prima del ciclo di misurazione.

I motori alimentati a GN e GPL devono venire rodati con la prova ETC. Il motore viene rodato per almeno due cicli ETC e fino a quando le emissioni di CO misurate su un ciclo ETC non superano di oltre il 25% le emissioni di CO misurate nel precedente ciclo ETC.

3.1. Preparazione di filtri di campionamento (solo per motori diesel)

Almeno un'ora prima della prova ciascun/a filtro/coppia di filtri viene introdotto/a in una scatola di Petri chiusa ma non sigillata e posto in una camera di pesata per la stabilizzazione. Al termine del periodo di stabilizzazione, ciascun/a filtro/coppia di filtri viene pesato/a e se ne registra la tara. Il filtro o la coppia di filtri viene poi conservato/a in una scatola di Petri chiusa o in un portafiltri fino al momento della prova. Se il filtro/ coppia di filtri non viene utilizzato/a entro otto ore dalla rimozione della camera di pesata, deve essere condizionato/a e pesato/a nuovamente prima dell'uso.

3.2. Installazione dell'apparecchiatura di misurazione

Installare la strumentazione e le sonde del campione come prescritto. Il condotto di scarico deve essere collegato al sistema di diluizione a flusso pieno.

3.3. Avviamento del sistema di diluizione e del motore

Il sistema di diluizione e il motore vengono avviati e riscaldati fino alla stabilizzazione delle temperature e delle pressioni al regime di potenza massima secondo le raccomandazioni del costruttore e la buona pratica ingegneristica.

3.4. Avviamento del sistema di campionamento del particolato (solo per motori diesel)

Il sistema di campionamento del particolato viene avviato e fatto funzionare in derivazione (bypass). Il livello di fondo del particolato dell'aria di diluizione può essere determinato facendo passare aria di diluizione attraverso i filtri del particolato. Se si usa aria di diluizione filtrata, si può effettuare una misurazione unica prima o dopo la prova. Se l'aria di diluizione non è filtrata, si possono eseguire misure all'inizio e al termine del ciclo e calcolare la media dei valori.

3.5. Regolazione del sistema di diluizione a flusso pieno

Il flusso di gas di scarico diluito totale deve essere regolato in modo da escludere la condensazione d'acqua nel sistema e da ottenere una temperatura superficiale massima del filtro di 325 K (52°C) o minore (vedi allegato V, punto 2.3.1, DT).

3.6. Controllo degli analizzatori

Gli analizzatori delle emissioni devono essere azzerati e calibrati. Se si usano sacchetti di campionamento, devono essere vuotati.

3.7. Procedura di avviamento del motore

Avviare il motore stabilizzato secondo la procedura di avviamento raccomandata dal costruttore nel manuale d'uso utilizzando un motorino di avviamento di serie o la macchina dinamometrica. In alternativa, la prova può partire direttamente dalla fase di precondizionamento del motore senza spegnere il motore quando questo ha raggiunto il regime di minimo.

3.8. Ciclo di prova

3.8.1. Sequenza di prova

Se il motore ha raggiunto il regime di minimo, avviare la sequenza di prova. La prova deve essere eseguita secondo il ciclo di riferimento specificato al punto 2 della presente appendice. Le regolazioni di comando del regime e della coppia devono essere emesse ad una frequenza di 5 Hz o maggiore (valore raccomandato 10 Hz). Registrare almeno una volta al secondo durante il ciclo di prova il regime e la coppia di feedback; i segnali possono venire filtrati elettronicamente.

3.8.2. Risposta degli analizzatori

All'avviamento del motore o della sequenza di prova, se il ciclo viene avviato direttamente dal precondizionamento, avviare simultaneamente le apparecchiature di misurazione:

- avviare la raccolta o l'analisi dell'aria di diluizione;
- avviare la raccolta o l'analisi del gas di scarico diluito;
- avviare la misurazione della quantità di gas di scarico diluito (CVS) e delle temperature e pressioni prescritte;
- avviare la registrazione dei dati di retroazione (feedback) di regime e coppia del banco dinamometrico.

 $\rm HC$ e $\rm NO_x$ devono essere misurati in continuo nella galleria di diluizione con una frequenza di 2 Hz. Le concentrazioni medie vengono determinate mediante integrazione dei segnali dell'analizzatore su tutto il ciclo di prova. Il tempo di risposta del sistema non deve essere maggiore di 20 s e deve essere coordinato con le fluttuazioni di flusso nel CVS e con gli scarti tra tempo di campionamento e ciclo di prova, se necessario determinare $\rm CO$, $\rm CO_2$, $\rm NMHC$ e $\rm CH_4$ mediante integrazione o mediante analisi delle concentrazioni nel sacchetto di campionamento raccolte su tutto il ciclo. Le concentrazioni degli inquinanti gassosi presenti nell'aria di diluizione vengono determinate mediante integrazione o mediante raccolta nel sacchetto del fondo. Tutti gli altri valori devono essere registrati con almeno una misura al secondo (1 Hz).

3.8.3. Campionamento del particolato (solo motori diesel)

All'avviamento del motore o della sequenza di prova, se il ciclo viene avviato direttamente dal precondizionamento, commutare il sistema di campionamento del particolato dal bypass alla raccolta del particolato.

Se non si usa compensazione del flusso, regolare la o le pompe del campione in modo che la portata attraverso la sonda di campionamento del particolato o il tubo di trasferimento venga mantenuta con un'approssimazione del ±5% sulla portata impostata. Se si usa la compensazione di flusso (cioè il controllo proporzionale del flusso del campione), si deve dimostrare che il rapporto tra il flusso nella galleria principale e il flusso del campione di particolato non devia di oltre il ±5% dal valore stabilito (salvo per i primi 10 secondi di campionamento).

Nota: Per operazioni a doppia diluizione, il flusso del campione è la differenza netta tra la portata attraverso i filtri del campione e la portata dell'aria di diluizione secondaria.

Registrare la temperatura e la pressione medie all'ingresso dei misuratori del gas o della strumentazione di controllo del flusso. Se la portata impostata non può venire mantenuta per tutto il ciclo (con un'approssimazione di ±5%) a causa di un elevato carico di particolato sul filtro, la prova deve essere annullata. Eseguire di nuovo la prova utilizzando una portata minore e/o un filtro di diametro maggiore.

3.8.4. Arresto del motore

Se il motore si arresta in qualunque momento durante il ciclo di prova, precondizionare e riavviare il motore e ripetere la prova. In caso di mal funzionamento di qualsiasi apparecchiatura di prova prescritta durante il ciclo di prova, annullare la prova.

3.8.5. Operazioni da eseguire dopo la prova

Al completamento della prova, arrestare la misurazione del volume di gas di scarico diluito, il flusso di gas nei sacchetti di raccolta e la pompa di campionamento del particolato. Se si usa un analizzatore integratore, continuare il campionamento fino a quando sono trascorsi i tempi di risposta del sistema.

Se si usano i sacchetti di raccolta, analizzare le concentrazioni al più presto, in ogni caso non oltre 20 minuti dopo il termine del ciclo di prova.

Dopo l'analisi delle emissioni, usare un gas di azzeramento e lo stesso gas di calibrazione per ricontrollare gli analizzatori. La prova sarà considerata accettabile se la differenza dei risultati prima e dopo la prova è minore del 2% del valore relativo al gas di calibrazione.

Solo per i motori diesel, riportare i filtri del particolato nella camera di pesata non più di un'ora dopo il completamento della prova e condizionarli in una scatola di Petri chiusa ma non sigillata per almeno un'ora e non più di 80 ore prima dell'esecuzione della pesata.

3.9. Verifica della conduzione della prova

3.9.1. Spostamento dei dati

Per minimizzare l'effetto distorsivo del ritardo temporale tra i valori di retroazione e i valori del ciclo di riferimento, l'intera sequenza dei segnali di retroazione della velocità e della coppia può venire anticipata o ritardata nel tempo rispetto alla sequenza della velocità e della coppia di riferimento. Se i segnali di retroazione sono spostati, spostare la velocità e la coppia nella stessa misura e nella stessa direzione.

Il lavoro prodotto nel ciclo effettivo W_{act} (kWh) si calcola utilizzando ciascuna coppia di valori di retroazione della velocità del regime e della coppia del motore. Questo calcolo deve essere eseguito dopo l'eventuale spostamento dei dati di retroazione, se si sceglie questa opzione. Il lavoro prodotto nel ciclo effettivo W_{act} viene utilizzato per confronto con il lavoro prodotto nel ciclo di riferimento W_{ref} e per il calcolo delle emissioni specifiche al freno (vedi punti 4.4 e 5.2). Usare la stessa metodologia per integrare sia la potenza di riferimento che la potenza effettiva del motore. Se si devono determinare valori compresi tra valori di riferimento adiacenti ovvero fra valori misurati contigui, si deve impiegare l'interpolazione lineare.

Nell'integrazione del lavoro prodotto nel ciclo di riferimento e in quello effettivo, tutti i valori di coppia negativi vengono posti uguali a zero ed inclusi. Se l'integrazione viene eseguita ad una frequenza minore di 5 Hertz, e se, durante un dato segmento di tempo, il valore di coppia si modifica da positivo a negativo o da negativo a positivo, calcolare la porzione negativa e porla uguale a zero. La porzione positiva deve essere inclusa nel valore integrato.

 W_{act} deve essere compreso tra il –15% e il +5% di W_{ref}

3.9.3. Analisi statistica di convalida del ciclo di prova

Eseguire regressioni lineari sui valori di feedback e sui valori di riferimento per il regime, la coppia e la potenza. Questo calcolo deve essere eseguito dopo l'eventuale spostamento dei dati di retroazione, se si sceglie questa opzione. Usare il metodo dei minimi quadrati con un'equazione di interpolazione ottimale avente la forma:

$$y = mx + b$$

dove:

y = valore di retroazione (effettivo) della velocità (min⁻¹), della coppia (Nm) o della potenza (kW)

m = coefficiente angolare della linea di regressione

x = valore di riferimento della velocità (min⁻¹), della coppia (Nm) o della potenza (kW)

b = intercetta su y della linea di regressione

Calcolare l'errore standard della stima (SE) di y su x e il coefficiente di determinazione (r^2) per ciascuna linea di regressione.

Si raccomanda di eseguire questa analisi a 1 Hertz. Tutti i valori negativi della coppia di riferimento e i valori di feedback associati devono essere cancellati dal calcolo statistico di convalida della coppia e della potenza del ciclo. Una prova può essere considerata valida, se rispetta i criteri indicati in tabella 6

Tabella 6
Tolleranze della linea di regressione

	velocità	coppia	potenza
Errore standard della stima (SE) di Y su X	massimo 100 min ⁻¹	massimo 13% della cop- pia massima del motore che risulta dalla mappa di potenza	massimo 8% della massima del motore che risulta dalla mappa di potenza
Coefficiente angolare della linea di regressione, m	0,95 a 1,03	0,83-1,03	0,89-1,03
Coefficiente di determina- zione, r ²	min 0,9700	min 0,8800	min 0,9100
Intercetta su Y della linea di regressione, b	± 50 min ⁻¹	valore più elevato tra ±20 Nm e ±2% della coppia massima	

È ammessa la cancellazione di punti dalle analisi di regressione secondo quanto indicato in tabella 7.

Tabella 7

Cancellazioni di punti dall'analisi di regressione ammesse

Condizione	Punti da cancellare			
Pieno carico/piena ammissione e coppia di retroazione < coppia di riferimento	coppia e/o potenza			
A vuoto, non al minimo, e coppia di retro- azione > coppia di riferimento	coppia e/o potenza			
A vuoto/ammissione chiusa, al minimo e velocità > velocità di riferimento al minimo	regime e/o potenza			

4. CALCOLO DELLE EMISSIONI GASSOSE

4.1. Determinazione del flusso di gas di scarico diluito

La massa totale di gas di scarico diluito fluita durante tutto il ciclo (kg/prova) viene determinata mediante valori delle misure effettuate durante il ciclo e dai corrispondenti dati di taratura del dispositivo di misurazione della portata (V_0 per PDP o K_V per CFV, come determinato nell'allegato III, appendice 5, punto 2). Se la temperatura dello scarico diluito viene mantenuta costante durante tutto il ciclo mediante l'uso di uno scambiatore di calore (\pm 6 K per PDP-CVS, \pm 11 K per CFV-CVS, vedi allegato V, punto 2.3), si applicano le formule seguenti.

Per il sistema PDB-CVS:

$$M_{TOTW} = 1,293*V_0*N_p*(p_B-p_1)*273/(101,3*T) \\$$

dove:

 M_{TOTW} = massa di gas di carico diluito, su umido, su tutto il ciclo, kg

V₀ = volume di gas pompato per giro nelle condizioni di prova, m³/giro

 N_P = giri totali della pompa per prova

p_B = pressione atmosferica nell'ambiente di prova, kPa

 p_1 = depressione al di sotto della pressione atmosferica all'ingresso della pompa, kPa

T = temperatura media del gas di scarico diluito all'ingresso della pompa sull'arco del ciclo, K

Per il sistema CFV-CVS:

$$M_{TOTW} = 1,293 * t * K_v * p_A / T^{0.5}$$

dove:

 M_{TOTW} = massa di gas di carico diluito, su umido, su tutto il ciclo, kg

t = durata del ciclo, s

 K_v = coefficiente di taratura del tubo di Venturi a portata critica per le condizioni standard,

p_A = pressione assoluta all'ingresso del tubo di Venturi, kPa

T = temperatura assoluta all'ingresso del tubo di Venturi, K

Se si usa un sistema con compensazione del flusso (cioè senza scambiatori di calore), calcolare le emissioni massiche istantanee e integrarle sul ciclo. In questo caso, la massa istantanea del gas di scarico diluito si calcola come segue.

Per il sistema PDP-CVS:

$$M_{TOTW,i} = 1,293*V_0*N_{p,i}*(p_B-p_1)*273 \: / \: (101,3 \cdot T)$$

dove:

M_{TOTW,i} = massa istantanea del gas di scarico diluito su umido, kg

N_{p,i} = giri totali della pompa per ogni intervallo di tempo

$$M_{TOTW,i} = 1,293*\Delta t_i*K_v*p_A \; / \; T^{0,5}$$

dove:

IT

M_{TOTW,i} = massa istantanea del gas di scarico diluito su umido, kg

 Δt_i = intervallo di tempo, s

Se la massa totale del campione di particolato (M_{SAM}) e di inquinanti gassosi supera lo 0,5 % del flusso totale nel CVS (M_{TOTW}) , tale flusso deve essere corretto tenendo conto di M_{SAM} oppure il flusso del campione di particolato deve essere rinviato nel CVS prima che nel dispositivo di misurazione del flusso (PDP o CFV).

4.2. Correzione di NO_x in funzione dell'umidità

Poiché l'emissione di NO_x dipende dalle condizioni dell'aria ambiente, la concentrazione di NO_x deve essere corretta per tenere conto dell'umidità dell'aria ambiente con fattori forniti dalle formule seguenti.

a) per i motori diesel:

$$K_{H,D} = \frac{1}{1 - 0,0182*(H_a - 10,71)}$$

b) per i motori a gas:

$$K_{H,G} = \frac{1}{1 - 0.0329*(H_a - 10.71)}$$

dove:

H_a = umidità dell'aria di aspirazione, g di acqua per kg di aria secca

in cui

$$H_a = \frac{6,220*R_a*p_a}{p_B - p_a*R_a*10^{-2}}$$

R_a = umidità relativa dell'aria di aspirazione,%

p_a = pressione di vapore di saturazione dell'aria di aspirazione, kPa

p_B = pressione barometrica totale, kPa

4.3. Calcolo del flusso massico delle emissioni

4.3.1. Sistemi a flusso massico costante

Per sistemi con scambiatori di calore, la massa degli inquinanti (g/prova) viene determinata dalle equazioni seguenti:

(1) $NO_{x \text{ mass}} = 0.001587 * NO_{x \text{ conc}} * K_{H,D} * M_{TOTW}$ (motori diesel)

(2) $NO_{x \text{ mass}} = 0.001587 * NO_{x \text{ conc}} * K_{H,G} * M_{TOTW}$ (motori gas)

(3) $CO_{mass} = 0.000966 * CO_{conc} * M_{TOTW}$

(4) $HC_{mass} = 0.000479 * HC_{conc} * M_{TOTW'}$ (motori diesel)

(5) $HC_{mass} = 0.000502 * HC_{conc} * M_{TOTW'}$ (motori a GPL)

(6) $NMHC_{mass} = 0.000516 * NMHC_{conc} * M_{TOTW'}$ (motori a GN)

(7) $CH_{4 \text{ mass}} = 0.000552 * CH_{4 \text{ conc}} * M_{TOTW}$ (motori a GN)

dove:

 $NO_{x \text{ conc}}$, CO_{conc} , HC_{conc} (1), $NMHC_{conc}$ = concentrazioni delle concentrazioni di fondo corrette, medie sul ciclo ricavate per integrazione (metodo obbligatorio per NO_x e HC) o misura in sacchetto, ppm

M_{TOTW} = massa totale del gas di scarico diluito su tutto il ciclo come determinata al punto 4.1, kg

K_{H,D} = fattore di correzione dell'umidità per motori diesel determinato al punto 4.2

K_{H.G} = fattore di correzione dell'umidità per motori a gas determinato al punto 4.2

⁽¹⁾ Su base C1 equivalente.

Convertire nel valore su umido le concentrazioni misurate su secco secondo l'allegato III, appendice 1, punto 4.2.

La determinazione di $NMHC_{conc}$ dipende del metodo usato (vedi allegato III, appendice 4, punto 3.3.4). In ambedue i casi si deve determinare la concentrazione di CH_4 e sottrarla dalla concentrazione di HC come segue:

a) metodo GC

$$NMHC_{conc} = HC_{conc} - CH_{4 conc}$$

b) metodo NMC

$$NMHC_{conc} = \frac{HC(oCutter) * (1 - CE_{M}) - HC(wCutter)}{CE_{E} - CE_{M}}$$

dove:

HC(wCutter) = concentrazione di HC quando campione di gas fluisce attraverso l'NMC

HC(w/oCutter) = concentrazione di HC quando campione di gas bypassa l'NMC

CE_M = efficienza del metano determinata secondo l'allegato III; appendice 5, punto

1.8.4.1.

 CE_E = efficienza del metano determinata secondo l'allegato III, appendice 5, punto

1.8.4.2.

4.3.1.1. Determinazione delle concentrazioni corrette di fondo

La concentrazione di fondo media degli inquinanti gassosi nell'aria di diluizione deve venire sottratta dalle concentrazioni misurate per ottenere le concentrazioni nette degli inquinanti. I valori medi delle concentrazioni di fondo possono venire determinati mediante il metodo del sacchetto di campionamento oppure mediante misurazione continua e integrazione. Usare la formula seguente.

$$conc = conc_e - conc_d * (1 - (1/DF))$$

dove:

conc = concentrazione del rispettivo inquinante nel gas di scarico diluito, corretta della quantità del rispettivo inquinante contenuta nell'aria di diluizione, ppm

conc_e = concentrazione del rispettivo inquinante misurata nel gas di scarico diluito, ppm

 $conc_d$ = concentrazione del rispettivo inquinante misurata nell'aria di diluizione, ppm

DF = fattore di diluizione

Il fattore di diluizione si calcola come segue:

a) per motori diesel e motori a GPL:

$$DF = \frac{F_S}{CO_{2,conce} + (HC_{conce} + CO_{conce}) * 10^{-4}}$$

b) per motori a GN:

$$DF = \frac{F_S}{CO_{2,conce} + (NMHC_{conce} + CO_{conce}) * 10^{-4}}$$

dove:

CO_{2, conce} = concentrazione di CO₂ nel gas di scarico diluito, vol %

HC_{conce} = concentrazione di HC nel gas di scarico diluito, ppm C1

 $NMHC_{conce}$ = concentrazione di NMHC nel gas di scarico diluito, ppm C1

 $\mathrm{CO}_{\mathrm{conce}}$ = concentrazione di CO nel gas di scarico diluito, ppm

 F_S = fattore stechiometrico

Le concentrazioni misurate su secco devono essere convertite nel valore su sumido secondo l'allegato III, appendice 1, punto 4.2.

Il fattore stechiometrico si calcola come segue:

$$F_S = 100 * \frac{x}{x + \frac{y}{2} + 3,76 * (x + \frac{y}{4})}$$

dove:

 $x, y = composizione del combustibile C_xH_y$

In alternativa, se la composizione del combustibile non è nota, si possono usare i seguenti fattori stechiometrici:

 F_S (diesel) = 13,4

 F_S (GPL) = 11,6

 $F_S (GN) = 9.5$

4.3.2. Sistemi con compensazione del flusso

Per sistemi senza scambiatore di calore, la massa degli inquinanti (g/prova) deve venire determinata calcolando le emissioni massiche istantanee e integrando i valori istantanei sul ciclo. Inoltre, la correzione del fondo viene applicata direttamente al valore di concentrazione istantaneo. Si applicano le formule seguenti:

$$\begin{aligned} \text{(1)} \quad NO_{x \, mass} &= \sum_{i=1}^{n} \, \left(M_{TOTW,i} * NO_{x \, conce,i} * 0,001587 * K_{H,D} \right) \\ &- \left(M_{TOTW} * NO_{x \, concd} * \left(1 - 1/DF \right) * 0,001587 * K_{H,D} \right) \, (\text{motori diesel}) \end{aligned}$$

$$(2) \ \ NO_{x \, mass} = \sum_{i=1}^{n} \ (M_{TOTW,i} * NO_{x \, conce,i} * 0,001587 * K_{H,G}) \\ - (M_{TOTW} * NO_{x \, concd} * (1-1/DF) * 0,001587 * K_{H,G}) \ (motori \, a \, gas)$$

(3)
$$CO_{mass} = \sum_{i=1}^{n} (M_{TOTW,i} * CO_{conce,i} * 0,000966) - (M_{TOTW} * CO_{concd} * (1 - 1/DF) * 0,000966)$$

$$\text{(4)} \ \ HC_{mass} = \sum_{i=1}^{n} \ (M_{TOTW,i}*HC_{conce,i}*0,000479) \\ -(M_{TOTW}*HC_{concd}*(1-1/DF)*0,000479) \ (motori \ diesel)$$

$$\text{(5)} \ \ HC_{mass} = \sum_{i=1}^{n} \ (M_{TOTW,i} * HC_{conce,i} * 0,000502) \\ - (M_{TOTW} * HC_{concd} * (1-1/DF) * 0,000502) \ (motori \ a \ GPL)$$

(6)
$$NMHC_{mass} = \sum_{i=1}^{n} (M_{TOTW,i} * NMHC_{conce,i} * 0,000516)$$

 $-(M_{TOTW} * NMHC_{concd} * (1 - 1/DF) * 0,000516)$ (motori a GN)

$$(7) \ \ CH_{4 \; mass} = \sum_{i=1}^{n} \ (M_{TOTW,i} * CH_{4 \; conce,i} * 0,000552) \\ - (M_{TOTW} * CH_{4 \; concd} * (1-1/DF) * 0,000552) \ (motori \; a \; GN)$$

dove:

conc_e = concentrazione del rispettivo inquinante misurata nel gas di scarico diluito, ppm

conc_d = concentrazione del rispettivo inquinante misurata nell'aria di diluizione, ppm

M_{TOTW.i} = massa istantanea del gas di scarico diluito (vedi punto 4.1), kg

 M_{TOTW} = massa totale del gas di scarico diluito su tutto il ciclo (vedi punto 4.1), kg

 $K_{H,D}$ = fattore di correzione dell'umidità per i motori diesel determinato al punto 4.2

 $K_{H,G}$ = fattore di correzione dell'umidità per i motori a gas determinato al punto 4.2

DF = fattore di diluizione determinato al punto 4.3.1.1.

4.4. Calcolo delle emissioni specifiche

Calcolare le emissioni (g/kWh) per tutti i singoli componenti nel modo seguente:

 $\overline{NO_x} = NO_{x \text{ mass}}/W_{act}$ (motori diesel e a gas)

CO = CO_{mass}/W_{act} (motori diesel e a gas)

 $\overline{HC} = HC_{mass}/W_{act}$ (motori diesel e a GPL)

NMHC = NMHC_{mass}/W_{act} (motori a GN)

 $\overline{CH_4} = CH_{4 \text{ mass}}/W_{act} \text{ (motori a GN)}$

dove

W_{act} = lavoro prodotto nel ciclo effettivo determinato al punto 3.9.2, kWh

5. CALCOLO DELLE EMISSIONI DI PARTICOLATO (SOLO MOTORI DIESEL)

5.1. Calcolo della massa emessa

La massa di particolato (g/prova) si calcola come segue:

$$PT_{mass} = \frac{M_f}{M_{SAM}} * \frac{M_{TOTW}}{1\ 000}$$

dove:

M_f = massa di particolato campionata nel ciclo, mg

M_{TOTW} = massa totale del gas di scarico diluito su tutto il ciclo determinata al punto 4.1, kg

M_{SAM} = massa del gas di scarico diluito prelevato dalla galleria di diluizione per la raccolta del particolato, kg

e

 M_f = $M_{f,p}$ + $M_{f,b}$, se pesati separatamente, mg

 $M_{f,p}$ = massa di particolato raccolta sul filtro principale, mg

M_{f,b} = massa di particolato raccolta sul filtro di sicurezza, mg

Se si usa un sistema a doppia diluizione, sottrarre la massa dell'aria di diluizione secondaria dalla massa totale del gas di scarico doppiamente diluito campionato attraverso i filtri del particolato.

$$M_{SAM} = M_{TOT} - M_{SEC}$$

dove:

M_{TOT} = massa del gas di scarico doppiamente diluito che passa attraverso il filtro del particolato, kg

M_{SEC} = massa del'aria di diluizione secondaria, kg

Se il valore di fondo del particolato nell'aria di diluizione viene determinato secondo il punto 3.4, si può correggere la massa del particolato per tenere conto del fondo. In questo caso, la massa di particolato (g/prova) si calcola come segue:

$$\text{PT}_{\text{mass}} = \left[\frac{M_{\text{f}}}{M_{\text{SAM}}} - \left(\frac{M_{\text{d}}}{M_{\text{DIL}}} * \left(1 - \frac{1}{\text{DF}}\right)\right)\right] * \frac{M_{\text{TOTW}}}{1\,000}$$

dove:

 M_f , M_{SAM} , M_{TOTW} = vedi sopra

M_{DIL} = massa dell'aria di diluizione primaria campionata mediante il campionatore del particolato di fondo, kg

M_d = massa del particolato di fondo raccolto dall'aria di diluizione primaria, mg

DF = fattore di diluizione determinato al punto 4.3.1.1.

5.2. Calcolo delle emissioni specifiche

Le emissioni di particolato (g/kWh) si calcolano nel modo seguente:

$$\overline{PT} = PT_{mass}/W_{act}$$

dove:

IT

 W_{act} = lavoro prodotto nel ciclo effettivo, determinato al punto 3.9.2, kWh.

Appendice 3

TABELLA MACCHINA DINAMOMETRICA ETC

Tempo	Velocità	Coppia	Tempo	Velocità	Coppia	Tempo	Velocità	Coppia
rempo	normalizzata	normalizzata	теттро	normalizzata	normalizzata	rempo	normalizzata	normalizzata
S	%	%	S	%	%	S	%	%
1	0	0	63	28,5	20,9	125	65,3	«m»
2	0	0	64	32	73,9	126	64	«m»
3	0	0	65	4	82,3	127	59,7	«m»
4	0	0	66	34,5	80,4	128	52,8	«m»
5	0	0	67	64,1	86	129	45,9	«m»
6	0	0	68	58	0	130	38,7	«m»
7	0	0	69	50,3	83,4	131	32,4	«m»
8	0	0	70	66,4	99,1	132	27	«m»
9	0	0	71	81,4	99,6	133	21,7	«m»
10	0	0	72	88,7	73,4	134	19,1	0,4
11	0	0	73	52,5	0	135	34,7	14
12	0	0	74	46,4	58,5	136	16,4	48,6
13	0	0	75 7.6	48,6	90,9	137	0	11,2
14	0	0	76	55,2	99,4	138	1,2	2,1
15	0	0	77	62,3	99	139	30,1	19,3
16	0,1	1,5	78	68,4	91,5	140	30	73,9
17	23,1	21,5	79	74,5	73,7	141	54,4	74,4
18	12,6	28,5	80	38	0	142	77,2	55,6
19	21,8	71	81	41,8	89,6	143	58,1	0
20	19,7	76,8	82	47,1	99,2	144	45	82,1
21	54,6	80,9	83	52,5	99,8	145	68,7	98,1
22	71,3	4,9	84	56,9	80,8	146	85,7	67,2
23	55,9	18,1	85	58,3	11,8	147	60,2	0
24	72	85,4	86	56,2	«m»	148	59,4	98
25	86,7	61,8	87	52	«m»	149	72,7	99,6
26	51,7	0	88	43,3	«m»	150	79,9	45
27		48,9	89	36,1		151	44,3	0
	53,4			-	«m»			
28	34,2	87,6	90	27,6	«m»	152	41,5	84,4
29	45,5	92,7	91	21,1	«m»	153	56,2	98,2
30	54,6	99,5	92	8	0	154	65,7	99,1
31	64,5	96,8	93	0	0	155	74,4	84,7
32	71,7	85,4	94	0	0	156	54,4	0
33	79,4	54,8	95	0	0	157	47,9	89,7
34	89,7	99,4	96	0	0	158	54,5	99,5
35	57,4	0	97	0	0	159	62,7	96,8
36	59,7	30,6	98	0	0	160	62,3	0
37	90,1	«m»	99	0	0	161	46,2	54,2
38	82,9	«m»	100	0	0	162	44,3	83,2
39	51,3	«m»	101	0	0	163	48,2	13,3
40	28,5	«m»	102	0	0	164	51	«m»
41	29,3	«m»	103	0	0	165	50	«m»
42	26,7	«m»	104	0	0	166	49,2	«m»
43	20,4	«m»	105	0	0	167	49,3	«m»
44	14,1	0	106	0	0	168	49,9	«m»
45	6,5	0	107	0	0	169	51,6	«m»
46 47	0	0	108	11,6	14,8	170	49,7	«m»
47 48	0	0	109	0	0	171	48,5	«m»
	0	0	110	27,2	74,8	172	50,3	72,5
49	0	0	111	17	76,9	173	51,1	84,5
50	0	0	112	36	78	174	54,6	64,8
51	0	0	113	59,7	86	175	56,6	76,5
52	0	0	114	80,8	17,9	176	58	«m»
53	0	0	115	49,7	0	177	53,6	«m»
54	0	0	116	65,6	86	178	40,8	«m»
55	0	0	117	78,6	72,2	179	32,9	«m»
56	0	0	118	64,9	«m»	180	26,3	«m»
57	0	0	119	44,3	«m»	181	20,9	«m»
58	0	0	120	51,4	83,4	182	10	0
59	0	0	121	58,1	97	183	0	0
60	0	0	122	69,3	99,3	184	0	0
61	0	0	123	72	20,8	185	0	0
62	25,5	11,1	124	72,1	«m»	186	0	0
UΔ	l 29,9	11,1	147	/ 4,1	"111"	100	ı	l ⁰

-						-	_	
Tempo	Velocità normalizzata	Coppia normalizzata	Tempo	Velocità normalizzata	Coppia normalizzata	Tempo	Velocità normalizzata	Coppia normalizzata
S	%	%	S	%	%	S	%	%
187	0	0	255	54,5	«m»	323	43	24,8
188	0	0	256	51,7	17	324	38,7	0
189	0	0	257	56,2	78,7	325	48,1	31,9
190	0	0	258	59,5	94,7	326	40,3	61
191	0	0	259	65,5	99,1	327	42,4	52,1
192	0	0	260	71,2	99,5	328	46,4	47,7
193	0	0 0	261	76,6 79	99,9	329	46,9	30,7
194 195	0	0	262 263	52,9	0 97,5	330 331	46,1 45,7	23,1 23,2
196	0	0	264	53,1	99,7	332	45,5	31,9
197	0	0	265	59	99,1	333	46,4	73,6
198	0	0	266	62,2	99	334	51,3	60,7
199	0	0	267	65	99,1	335	51,3	51,1
200	0	0	268	69	83,1	336	53,2	46,8
201	0	0	269	69,9	28,4	337	53,9	50
202	0	0	270	70,6	12,5	338	53,4	52,1
203	0	0	271	68,9	8,4	339	53,8	45,7
204	0	0	272	69,8	9,1	340	50,6	22,1
205	0	0	273	69,6	7	341	47,8	26
206	0	0	274	65,7	«m»	342	41,6	17,8
207	0	0	275	67,1	«m»	343	38,7	29,8
208	0	0	276	66,7	«m»	344	35,9	71,6
209	0	0	277	65,6	«m»	345	34,6	47,3
210	0	0 0	278	64,5	«m»	346	34,8	80,3
211 212	0	0	279 280	62,9 59,3	«m»	347 348	35,9 38,8	87,2 90,8
212	0	0	280	54,1	«m» «m»	348 349	38,8 41,5	90,8 94,7
214	0	0	282	51,3	«m»	350	47,1	99,2
215	0	0	283	47,9	«m»	351	53,1	99,7
216	0	0	284	43,6	«m»	352	46,4	0
217	0	0	285	39,4	«m»	353	42,5	0,7
218	0	0	286	34,7	«m»	354	43,6	58,6
219	0	0	287	29,8	«m»	355	47,1	87,5
220	0	0	288	20,9	73,4	356	54,1	99,5
221	0	0	289	36,9	«m»	357	62,9	99
222	0	0	290	35,5	«m»	358	72,6	99,6
223	0	0	291	20,9	«m»	359	82,4	99,5
224	0	0	292	49,7	11,9	360	88	99,4
225	21,2	62,7	293	42,5	«m»	361	46,4	0
226	30,8	75,1	294	32	«m»	362	53,4	95,2
227	5,9	82,7	295	23,6	«m»	363	58,4	99,2
228 229	34,6 59,9	80,3 87	296 297	19,1 15,7	0 73,5	364 365	61,5 64,8	99 99
230	84,3	86,2	297	25,1	75,5 76,8	366	68,1	99,2
231	68,7	«m»	299	34,5	81,4	367	73,4	99,2
232	43,6	«m»	300	44,1	87,4	368	73,3	29,8
233	41,5	85,4	301	52,8	98,6	369	73,5	14,6
234	49,9	94,3	302	63,6	99	370	68,3	0
235	60,8	99	303	73,6	99,7	371	45,4	49,9
236	70,2	99,4	304	62,2	«m»	372	47,2	75,7
237	81,1	92,4	305	29,2	«m»	373	44,5	9
238	49,2	0	306	46,4	22	374	47,8	10,3
239	56	86,2	307	47,3	13,8	375	46,8	15,9
240	56,2	99,3	308	47,2	12,5	376	46,9	12,7
241	61,7	99	309	47,9	11,5	377	46,8	8,9
242	69,2	99,3	310	47,8	35,5	378	46,1	6,2
243	74,1	99,8	311	49,2 52.7	83,3	379 380	46,1 45.5	«m»
244 245	72,4 71,3	8,4 0	312 313	52,7 57.4	96,4 99,2	380 381	45,5 44,7	«m»
245 246	71,3	9,1	313	57,4 61,8	99, <u>2</u> 99	381	44,/	«m» «m»
246	67,1	9,1 «m»	314	66,4	60,9	383	43,8 41	«III» «m»
248	65,5	«m»	316	65,8	«m»	384	41,1	«111» 6,4
249	64,4	«m»	317	59	«m»	385	38	6,3
250	62,9	25,6	318	50,7	«m»	386	35,9	0,3
251	62,2	35,6	319	41,8	«m»	387	33,5	0
252	62,9	24,4	320	34,7	«m»	388	53,1	48,9
253	58,8	«m»	321	28,7	«m»	389	48,3	«m»
254	56,9	«m»	322	25,2	«m»	390	49,9	«m»

Tompo	Velocità	Coppia	Tomno	Velocità	Coppia	Tomno	Velocità	Coppia
Tempo	normalizzata	normalizzata	Tempo	normalizzata	normalizzata	Tempo	normalizzata	normalizzata
S	%	%	S	%	%	s	%	%
391	48	«m»	459	51	100	527	60,7	«m»
392	45,3	«m»	460	53,2	99,7	528	54,5	«m»
393	41,6	3,1	461	53,1	99,7	529	51,3	«m»
394	44,3	79	462	55,9	53,1	530	45,5	«m»
395	44,3	89,5	463	53,9	13,9	531	40,8	«m»
396	43,4	98,8	464	52,5	«m»	532	38,9	«m»
397	44,3	98,9	465	51,7	«m»	533	36,6	«m»
398	43	98,8	466	51,5	52,2	534	36,1	72,7
399	42,2	98,8	467	52,8	80	535	44,8	78,9
400	42,7	98,8	468	54,9	95	536	51,6	91,1
401	45	99	469	57,3	99,2	537	59,1 66	99,1
402	43,6	98,9	470	60,7	99,1	538		99,1
403 404	42,2 44,8	98,8 99	471 472	62,4 60,1	«m»	539 540	75,1 81	99,9 8
404	44,8	98,8	4/2	53,2	«m»	540 541	39,1	8 0
406	45,4	98,8	473 474	44	«m»	542	53,8	89,7
407	42,2	54,3	474	35,2	«m»	543	59,7	99,7 99,1
407	61,2	31,9	473 476	30,5	«m»	544	64,8	99,1
409	56,3	72,3	477	26,5	«m» «m»	545	70,6	96,1
410	59,7	99,1	478	22,5	«m»	546	70,0 72,6	19,6
411	62,3	99	479	20,4	«m»	547	72,0	6,3
412	67,9	99,2	480	19,1	«m»	548	68,9	0,3
413	69,5	99,3	481	19,1	«m»	549	67,7	«m»
414	73,1	99,7	482	13,4	«m»	550	66,8	«m»
415	77,7	99,8	483	6,7	«m»	551	64,3	16,9
416	79,7	99,7	484	3,2	«m»	552	64,9	7
417	82,5	99,5	485	14,3	63,8	553	63,6	12,5
418	85,3	99,4	486	34,1	0	554	63	7,7
419	86,6	99,4	487	23,9	75,7	555	64,4	38,2
420	89,4	99,4	488	31,7	79,2	556	63	11,8
421	62,2	0	489	32,1	19,4	557	63,6	0
422	52,7	96,4	490	35,9	5,8	558	63,3	5
423	50,2	99,8	491	36,6	0,8	559	60,1	9,1
424	49,3	99,6	492	38,7	«m»	560	61	8,4
425	52,2	99,8	493	38,4	«m»	561	59,7	0,9
426	51,3	100	494	39,4	«m»	562	58,7	«m»
427	51,3	100	495	39,7	«m»	563	56	«m»
428	51,1	100	496	40,5	«m»	564	53,9	«m»
429	51,1	100	497	40,8	«m»	565	52,1	«m»
430	51,8	99,9	498	39,7	«m»	566	49,9	«m»
431	51,3	100	499	39,2	«m»	567	46,4	«m»
432	51,1	100	500	38,7	«m»	568	43,6	«m»
433	51,3	100	501	32,7	«m»	569	40,8	«m»
434	52,3	99,8	502	30,1	«m»	570	37,5	«m»
435	52,9	99,7	503	21,9	«m»	571	27,8	«m»
436	53,8	99,6	504	12,8	0	572	17,1	0,6
437	51,7	99,9	505	0	0	573	12,2	0,9
438	53,5	99,6	506	0	0	574	11,5	1,1
439	52	99,8	507	0	0	575	8,7	0,5
440	51,7	99,9	508	0	0	576	8	0,9
441	53,2	99,7	509	0	0	577	5,3	0,2
442	54,2	99,5	510	0	0	578	4	0
443	55,2	99,4	511	0	0	579	3,9	0
444	53,8	99,6	512	0	0	580	0	0
445	53,1	99,7	513	0	0	581	0	0
446	55	99,4	514	30,5	25,6	582	0	0
447	57	99,2	515	19,7	56,9	583	0	0
448	61,5	99	516	16,3	45,1	584	0	0
449	59,4	5,7	517	27,2	4,6	585	0	0
450	59	0	518	21,7	1,3	586	0	0
451	57,3	59,8	519	29,7	28,6	587	8,7	22,8
452	64,1	99	520	36,6	73,7	588	16,2	49,4
453	70,9	90,5	521	61,3	59,5	589	23,6	56
454	58	0	522	40,8	0	590	21,1	56,1
455	41,5	59,8	523	36,6	27,8	591	23,6	56
456	44,1	92,6	524	39,4	80,4	592	46,2	68,8
457	46,8	99,2	525	51,3	88,9	593	68,4	61,2
458	47,2	99,3	526	58,5	11,1	594	58,7	«m»

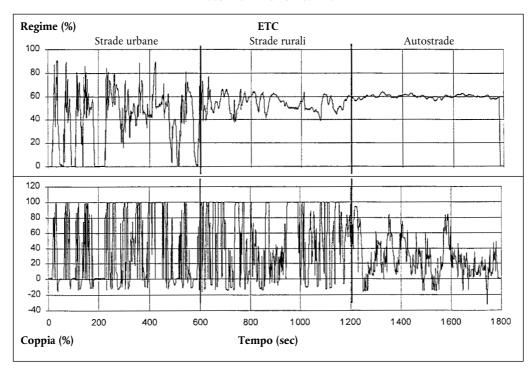
Tempo	Velocità normalizzata	Coppia normalizzata	Tempo	Velocità normalizzata	Coppia normalizzata	Tempo	Velocità normalizzata	Coppia normalizzata
S	%	%	S	%	%	S	%	%
595	31,6	«m»	663	54,9	59,8	731	56,8	«m»
596	19,9	8,8	664	54	39,3	732	57,1	«m»
597	32,9	70,2	665	53,8	«m»	733	52	«m»
598	43	79	666	52	«m»	734	44,4	«m»
599	57,4	98,9	667	50,4	«m»	735	40,2	«m»
600	72,1	73,8	668	50,6	0	736	39,2	16,5
601	53	0	669	49,3	41,7	737	38,9	73,2
602	48,1	86	670	50	73,2	738	39,9	89,8
603	56,2	99	671	50,4	99,7 99,5	739 740	42,3	98,6
604 605	65,4 72,9	98,9 99,7	672 673	51,9 53,6	99,3	740 741	43,7 45,5	98,8 99,1
606	67,5	«m»	674	54,6	99,1	742	45,6	99,2
607	39	«m»	675	56	99	743	48,1	99,7
608	41,9	38,1	676	55,8	99	744	49	100
609	44,1	80,4	677	58,4	98,9	745	49,8	99,9
610	46,8	99,4	678	59,9	98,8	746	49,8	99,9
611	48,7	99,9	679	60,9	98,8	747	51,9	99,5
612	50,5	99,7	680	63	98,8	748	52,3	99,4
613	52,5	90,3	681	64,3	98,9	749	53,3	99,3
614	51	1,8	682	64,8	64	750	52,9	99,3
615	50	«m»	683	65,9	46,5	751	54,3	99,2
616	49,1	«m»	684	66,2	28,7	752	55,5	99,1
617	47	«m»	685	65,2	1,8	753	56,7	99
618	43,1	«m»	686	65	6,8	754 755	61,7	98,8
619	39,2	«m»	687 688	63,6	53,6	755 756	64,3	47,4
620 621	40,6 41,8	0,5 53,4	689	62,4 61,8	82,5 98,8	756 757	64,7 66,2	1,8 «m»
622	44,4	65,1	690	59,8	98,8	758	49,1	«m»
623	48,1	67,8	691	59,2	98,8	759	52,1	46
624	53,8	99,2	692	59,7	98,8	760	52,6	61
625	58,6	98,9	693	61,2	98,8	761	52,9	0
626	63,6	98,8	694	62,2	49,4	762	52,3	20,4
627	68,5	99,2	695	62,8	37,2	763	54,2	56,7
628	72,2	89,4	696	63,5	46,3	764	55,4	59,8
629	77,1	0	697	64,7	72,3	765	56,1	49,2
630	57,8	79,1	698	64,7	72,3	766	56,8	33,7
631	60,3	98,8	699	65,4	77,4	767	57,2	96
632 633	61,9 63,8	98,8 98,8	700 701	66,1 64,3	69,3	768 769	58,6 59,5	98,9 98,8
634	64,7	98,9	701	64,3	«m» «m»	709 770	61,2	98,8 98,8
635	65,4	46,5	702	63	«m»	771	62,1	98,8
636	65,7	44,5	704	62,2	«m»	772	62,7	98,8
637	65,6	3,5	705	61,6	«m»	773	62,8	98,8
638	49,1	0	706	62,4	«m»	774	64	98,9
639	50,4	73,1	707	62,2	«m»	775	63,2	46,3
640	50,5	«m»	708	61	«m»	776	62,4	«m»
641	51	«m»	709	58,7	«m»	777	60,3	«m»
642	49,4	«m»	710	55,5	«m»	778 	58,7	«m»
643	49,2	«m»	711 712	51,7	«m»	779 780	57,2 56,1	«m»
644 645	48,6 47,5	«m»	712 713	49,2 48,8	«m» 40,4	780 781	56,1 56	«m» 9,3
646	46,5	«m» «m»	714	47,9	40,4 «m»	781 782	55,2	26,3
647	46	11,3	715	46,2	«m»	783	54,8	42,8
648	45,6	42,8	716	45,6	9,8	784	55,7	47,1
649	47,1	83	717	45,6	34,5	785	56,6	52,4
650	46,2	99,3	718	45,5	37,1	786	58	50,3
651	47,9	99,7	719	43,8	«m»	787	58,6	20,6
652	49,5	99,9	720	41,9	«m»	788	58,7	«m»
653	50,6	99,7	721	41,3	«m»	789	59,3	«m»
654	51	99,6	722	41,4	«m»	790	58,6	«m»
655	53	99,3	723	41,2	«m»	791	60,5	9,7
656	54,9	99,1	724 725	41,8	«m»	792 703	59,2	9,6
657 658	55,7 56	99 99	725 726	41,8	«m»	793 794	59,9 59,6	9,6 9,6
658	56,1	9,3	726 727	43,2 45	17,4 29	79 4 795	59,6 59,9	9,6 6,2
660	55,6	«m»	728	44,2	«m»	796	59,9	9,6
661	55,4	«m»	729	43,9	«m»	797	60,5	13,1
662	54,9	51,3	730	38	10,7	798	60,3	20,7

Tempo	Velocità normalizzata	Coppia normalizzata	Tempo	Velocità normalizzata	Coppia normalizzata	Tempo	Velocità normalizzata	Coppia normalizzata
S	mormanzzata %	mormanzzata %	s	mormanzzata %	mormanzzata %	s	mormanzzata %	mormanzzata %
799	59,9	31	867	52,3	99,4	935	52,8	60,1
800	60,5	42	868	53	99,3	936	53,7	69,7
801	61,5	52,5	869	54,2	99,2	937	54	70,7
802	60,9	51,4	870	55,5	99,1	938	55,1	71,7
803	61,2	57,7	871	56,7	99	939	55,2	46
804	62,8	98,8	872	57,3	98,9	940	54,7	12,6
805	63,4	96,1	873	58	98,9	941	52,5	0
806	64,6	45,4	874	60,5	31,1	942	51,8	24,7
807 808	64,1 63	5 3,2	875 876	60,2 60,3	«m»	943 944	51,4 50,9	43,9 71,1
809	62,7	14,9	877	60,5	«m» 6,3	944	51,2	71,1 76,8
810	63,5	35,8	878	61,4	19,3	946	50,3	87,5
811	64,1	73,3	879	60,3	1,2	947	50,2	99,8
812	64,3	37,4	880	60,5	2,9	948	50,9	100
813	64,1	21	881	61,2	34,1	949	49,9	99,7
814	63,7	21	882	61,6	13,2	950	50,9	100
815	62,9	18	883	61,5	16,4	951	49,8	99,7
816	62,4	32,7	884	61,2	16,4	952	50,4	99,8
817	61,7	46,2	885	61,3	«m»	953	50,4	99,8
818	59,8	45,1	886	63,1	«m»	954	49,7	99,7
819	57,4	43,9	887	63,2	4,8	955	51	100
820	54,8	42,8	888	62,3	22,3	956	50,3	99,8
821	54,3	65,2	889	62	38,5	957	50,2	99,8
822	52,9	62,1	890	61,6	29,6	958	49,9	99,7
823	52,4	30,6	891	61,6	26,6	959	50,9	100
824 825	50,4 48,6	«m»	892 893	61,8 62	28,1 29,6	960 961	50 50,2	99,7 99,8
826	47,9	«m» «m»	894	62	16,3	961	50,2	99,8
827	46,8	«m»	895	61,1	«m»	963	49,9	99,7
828	46,9	9,4	896	61,2	«m»	964	50,4	99,8
829	49,5	41,7	897	60,7	19,2	965	50,2	99,8
830	50,5	37,8	898	60,7	32,5	966	50,3	99,8
831	52,3	20,4	899	60,9	17,8	967	49,9	99,7
832	54,1	30,7	900	60,1	19,2	968	51,1	100
833	56,3	41,8	901	59,3	38,2	969	50,6	99,9
834	58,7	26,5	902	59,9	45	970	49,9	99,7
835	57,3	«m»	903	59,4	32,4	971	49,6	99,6
836	59	«m»	904	59,2	23,5	972	49,4	99,6
837	59,8	«m»	905	59,5	40,8	973	49	99,5
838	60,3	«m»	906	58,3	«m»	974	49,8	99,7
839	61,2	«m»	907	58,2	«m»	975	50,9	100
840 841	61,8 62,5	«m»	908 909	57,6 57,1	«m»	976 977	50,4 49,8	99,8 99,7
842	62,4	«m» «m»	910	57,1 57	«m» 0,6	977	49,8 49,1	99,7
843	61,5	«m»	911	57	26,3	979	50,4	99,8
844	63,7	«m»	912	56,5	29,2	980	49,8	99,7
845	61,9	«m»	913	56,3	20,5	981	49,3	99,5
846	61,6	29,7	914	56,1	«m»	982	49,1	99,5
847	60,3	«m»	915	55,2	«m»	983	49,9	99,7
848	59,2	«m»	916	54,7	17,5	984	49,1	99,5
849	57,3	«m»	917	55,2	29,2	985	50,4	99,8
850	52,3	«m»	918	55,2	29,2	986	50,9	100
851	49,3	«m»	919	55,9	16	987	51,4	99,9
852	47,3	«m»	920	55,9	26,3	988	51,5	99,9
853	46,3	38,8	921	56,1	36,5	989	52,2	99,7
854	46,8	35,1	922	55,8	19	990	52,8	74,1
855 856	46,6	«m»	923	55,9	9,2	991 992	53,3	46 36.4
856 857	44,3 43,1	«m»	924 925	55,8 56,4	21,9 42,8	992 993	53,6 53,4	36,4 33,5
857 858	43,1	«m» 2,1	923	56,4 56,4	42,8 38	993	53,4	53,5 58,9
859	41,8	2,1	920	56,4 56,4	11	994	55,2	73,8
860	43,8	68,8	928	56,4	35,1	996	55,8	52,4
861	44,6	89,2	929	54	7,3	997	55,7	9,2
862	46	99,2	930	53,4	5,4	998	55,8	2,2
863	46,9	99,4	931	52,3	27,6	999	56,4	33,6
864	47,9	99,7	932	52,1	32	1000	55,4	«m»
865	50,2	99,8	933	52,3	33,4	1001	55,2	«m»
866	51,2	99,6	934	52,2	34,9	1002	55,8	26,3

Tempo	Velocità normalizzata	Coppia normalizzata	Tempo	Velocità normalizzata	Coppia normalizzata	Tempo	Velocità normalizzata	Coppia normalizzata
S	%	%	S	%	%	S	%	%
1003	55,8	23,3	1071	42,5	«m»	1139	45,5	24,8
1004	56,4	50,2	1072	41	«m»	1140	44,8	73,8
1005	57,6	68,3	1073	39,9	«m»	1141	46,6	99
1006	58,8	90,2	1074	39,9	38,2	1142	46,3	98,9
1007	59,9	98,9	1075	40,1	48,1	1143	48,5	99,4
1008 1009	62,3 63,1	98,8 74,4	1076 1077	39,9	48 59,3	1144 1145	49,9 49,1	99,7 99,5
1010	63,7	74,4 49,4	1077	39,4 43,8	19,8	1145	49,1	99,5
1010	63,3	9,8	1078	52,9	0	1147	51	100
1012	48	0	1080	52,8	88,9	1148	51,5	99,9
1013	47,9	73,5	1081	53,4	99,5	1149	50,9	100
1014	49,9	99,7	1082	54,7	99,3	1150	51,6	99,9
1015	49,9	48,8	1083	56,3	99,1	1151	52,1	99,7
1016	49,6	2,3	1084	57,5	99	1152	50,9	100
1017	49,9	«m»	1085	59	98,9	1153	52,2	99,7
1018	49,3	«m»	1086	59,8	98,9	1154	51,5	98,3
1019 1020	49,7 49,1	47,5 «m»	1087 1088	60,1 61,8	98,9 48,3	1155 1156	51,5 50,8	47,2 78,4
1020	49,4	«m»	1089	61,8	55,6	1157	50,3	83
1022	48,3	«m»	1090	61,7	59,8	1158	50,3	31,7
1023	49,4	«m»	1091	62	55,6	1159	49,3	31,3
1024	48,5	«m»	1092	62,3	29,6	1160	48,8	21,5
1025	48,7	«m»	1093	62	19,3	1161	47,8	59,4
1026	48,7	«m»	1094	61,3	7,9	1162	48,1	77,1
1027	49,1	«m»	1095	61,1	19,2	1163	48,4	87,6
1028	49	«m»	1096	61,2	43	1164	49,6	87,5
1029 1030	49,8	«m»	1097 1098	61,1 61,1	59,7	1165 1166	51 51,6	81,4 66,7
1030	48,7 48,5	«m» «m»	1098	61,3	98,8 98,8	1167	53,3	63,2
1031	49,3	31,3	1100	61,3	26,6	1168	55,2	62
1033	49,7	45,3	1101	60,4	«m»	1169	55,7	43,9
1034	48,3	44,5	1102	58,8	«m»	1170	56,4	30,7
1035	49,8	61	1103	57,7	«m»	1171	56,8	23,4
1036	49,4	64,3	1104	56	«m»	1172	57	«m»
1037	49,8	64,4	1105	54,7	«m»	1173	57,6	«m»
1038	50,5	65,6	1106	53,3	«m»	1174	56,9	«m»
1039	50,3	64,5	1107	52,6	23,2	1175	56,4	4
1040 1041	51,2 50,5	82,9 86	1108 1109	53,4 53,9	84,2 99,4	1176 1177	57 56,4	23,4 41,7
1041	50,6	89	1110	54,9	99,3	1178	57	49,2
1043	50,4	81,4	1111	55,8	99,2	1179	57,7	56,6
1044	49,9	49,9	1112	57,1	99	1180	58,6	56,6
1045	49,1	20,1	1113	56,5	99,1	1181	58,9	64
1046	47,9	24	1114	58,9	98,9	1182	59,4	68,2
1047	48,1	36,2	1115	58,7	98,9	1183	58,8	71,4
1048	47,5	34,5	1116	59,8	98,9	1184	60,1	71,3
1049 1050	46,9 47,7	30,3 53,5	1117 1118	61 60,7	98,8 19,2	1185 1186	60,6 60,7	79,1 83,3
1050	46,9	61,6	1119	59,4	«m»	1187	60,7	77,1
1052	46,5	73,6	1120	57,9	«m»	1188	60	73,5
1053	48	84,6	1121	57,6	«m»	1189	60,2	55,5
1054	47,2	87,7	1122	56,3	«m»	1190	59,7	54,4
1055	48,7	80	1123	55	«m»	1191	59,8	73,3
1056	48,7	50,4	1124	53,7	«m»	1192	59,8	77,9
1057	47,8	38,6	1125	52,1	«m»	1193	59,8	73,9
1058	48,8	63,1 5	1126	51,1	«m»	1194	60 50.5	76,5
1059 1060	47,4 47,3	47,4	1127 1128	49,7 49,1	25,8 46,1	1195 1196	59,5 59,9	82,3 82,8
1061	47,3	49,8	1128	49,1	46,9	1190	59,9	65,8
1062	46,9	23,9	1130	48,2	46,7	1198	59	48,6
1063	46,7	44,6	1131	48	70	1199	58,9	62,2
1064	46,8	65,2	1132	48	70	1200	59,1	70,4
1065	46,9	60,4	1133	47,2	67,6	1201	58,9	62,1
1066	46,7	61,5	1134	47,3	67,6	1202	58,4	67,4
1067	45,5	«m»	1135	46,6	74,7	1203	58,7	58,9
1068 1069	45,5 44,2	«m» «m»	1136 1137	47,4 46,3	13 «m»	1204 1205	58,3 57,5	57,7 57,8
1009	44,2	«III» «m»	1137	46,3 45,4	«m»	1205	57,3 57,2	57,8 57,6
10/0	ı '´		1170	1 '2, '		1200	I 27,54	77,0

Tempo									
S	Tempo		Coppia	Tempo		Coppia	Tempo		
1207 57.1 42.6 1275 60.6 8.2 1343 61.3 19.2 1208 57 70.1 1276 60.6 8.5 1344 61 9.3 1209 56.4 59.6 1277 61 14.3 1345 60.8 44.2 1210 56.7 39 1278 61 12 1346 60.9 55.3 1211 55.9 68.1 1279 61.3 34.2 1347 61.2 56 61.2 56 62.3 63.3 61.3 60.7 59.1 1213 56.7 89.7 1281 61.5 15.7 1349 60.7 59.1 1214 56 89.4 1282 61 9.5 1350 60.9 56.8 1215 56 93.1 1283 61.1 9.2 1351 60.7 58.1 1216 56.4 93.1 1283 61.1 9.2 1351 60.7 58.1 1216 56.4 93.1 1284 60.5 7.8 1352 59.6 78.4 1218 56.9 94.8 1286 60.2 7.8 1353 59.6 84.6 1219 57 94.1 1287 60.2 5.3 1355 59.3 59.6 84.6 1219 57 94.1 1287 60.2 5.3 1355 59.3 75.5 1220 57.7 94.3 1288 59.9 4.6 1356 58.9 49.6 1221 57.5 93.7 1290 59.6 15.8 1358 59.9 75.8 1222 58.8 93.2 1290 59.6 15.8 1358 59.9 75.8 1222 58.5 93.1 1293 58.8 9 1361 58.8 59.6 78.4 1222 58.8 86.2 1294 58.9 35.4 1360 58.8 59.6 1229 57.6 8.5 1297 58.9 30.7 1360 58.8 59.6 78.4 1222 57.7 79.1 1293 58.8 9 1361 58.8 59.6 79.1 1222 57.6 8.5 1297 58.9 30.7 1363 58.9 56.7 1223 58.7 59.1 27.4 1293 58.8 9 1361 58.8 59.6 48.5 1222 57.7 57.1 47.6 1299 58.9 30.7 1363 58.9 56.7 1223 57.1 47.6 1299 58.9 30.7 1363 58.9 56.7 1223 57.1 47.6 1299 58.9 30.7 1363 58.9 56.7 1223 57.1 47.6 1299 58.9 30.7 1363 58.9 56.7 1223 57.1 47.6 1299 58.9 30.7 1363 58.9 48.5 1223 57.1 47.6 1299 58.9 30.7 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8 30.6 30.8	· ·			· ·			· ·		
1208									
1200									
1211									
1212 56,3 79,1 1280 61,2 17,1 1348 60,9 60,1 1214 56 89,4 1282 61 9,5 1350 60,9 56,8 1215 56 93,1 1283 61,1 9,2 1351 60,7 58,1 1216 56,4 93,1 1284 60,5 43 1352 59,6 78,4 1217 56,7 94,4 1285 60,2 7,8 1353 59,6 84,6 1218 56,9 94,8 1286 60,2 5,9 1354 59,4 66,6 1218 56,9 94,8 1286 60,2 5,9 1354 59,4 66,6 1219 57,9 94,3 1288 59,9 4,6 1355 59,3 75,5 1220 57,7 94,3 1288 59,9 4,6 1356 58,9 49,6 1221 57,5 93,7 1289 59,4 21,5 1357 59,1 75,8 1222 58,4 93,2 1290 59,6 15,8 1358 59 77,6 1223 58,7 94,2 1291 59,3 10,1 139, 59 67,8 1224 58,2 93,7 1292 38,9 9,4 1360 59 56,7 1225 58,5 93,1 129,2 58,9 35,4 1360 59,9 56,7 1227 58,8 86,2 1294 58,9 35,4 1362 58,9 59,6 1227 57,6 8,5 1297 58,9 22,9 1365 58,9 48,5 1230 57,1 47,6 1298 58,7 22,9 1365 58,9 48,5 1231 57,2 74,4 1299 59,3 61 1367 59,4 41,4 1232 57,6 8,5 1297 58,7 50,7 1370 59,3 42,9 1231 55,8 60,1 1302 59,5 60,1 1307 59,4 41,4 1232 57,7 67,2 1301 60,5 50,6 1369 59,4 32,9 1233 56,9 71,3 1304 59,7 50 1371 59,4 30 1234 58,8 60,6 1310 59,5 60,1 1375 58,5 10,6 1234 58,8 60,6 1310 60,5 50,6 1369 59,4 32,9 1234 58,8 60,6 1310 60,5 50,6 1369 59,4 32,9 1235 57,9 7,6 1306 60,8 38,4 1374 59,1 18,8 1239 57,7 64 1307 60,9 40,2 1375 58,5 58,5 1244 58,8 60,6 60,8 60,8 60,8 60,8 60,8 1245 58,8 60,6 60,8 60,8 60,8 60,8 1246 59,1 60,6 60,8 60,8 60,8 60,5 60,8 1247 58,6 60,1 60,5 60,6 60,8 60,8 60,6 60,8 1248 58,8 60,6 60,8 60,8 60,5 60,5 1249 58,8 60,6 60,8 60,8 60,	1210	56,7	39	1278	61		1346	60,9	55,3
1214 56	1211	55,9	68,1	1279	61,3	34,2	1347		56
1214 56		56,3	•	1280	61,2	17,1	1348	60,9	
1215 56,									
1216 56.4 93.1 1284 60.5 4.3 1352 59.6 78.4 1218 56.9 94.8 1286 60.2 5.9 1354 59.4 66.6 1218 57.9 94.1 1287 60.2 5.9 1354 59.4 66.6 1218 57.7 94.3 1288 59.9 4.6 1355 58.9 49.6 1221 57.5 93.7 1289 59.4 21.5 1357 59.1 75.8 1222 58.4 93.2 1290 59.6 15.8 1358 59.7 77.6 1223 58.7 93.7 1229 59.3 10.1 1359 59.6 67.8 1224 58.2 93.7 1229 58.8 9 1361 58.8 54.2 1224 58.2 93.7 1229 58.8 9 1361 58.8 54.2 1226 58.8 86.2 1294 58.9 35.4 1360 59. 56.7 1225 58.8 86.2 1294 58.9 30.7 1363 58.9 60.8 1229 58.2 59.9 1296 58.9 25.9 1364 59.3 59.6 60.8 1229 57.6 8.5 1297 58.7 22.9 1365 58.9 48.5 1232 57.1 47.6 1298 58.7 22.9 1365 58.9 48.5 1233 57.1 47.6 1298 58.7 22.9 1365 58.9 48.5 1233 57.2 74.4 1299 59.3 61 1367 59.4 41.4 1232 57.7 79.1 1300 60.1 56 1368 59.6 59.4 41.4 1232 57.7 79.1 1300 60.1 56 1368 59.6 59.4 41.4 1232 57.7 41.3 1303 59.7 50 1371 59.4 30 1235 56.8 69.1 1302 59.5 56.2 1370 59.3 30.6 1237 57.4 78.2 1305 60.8 38.4 1374 59.1 18 1237 57.4 78.2 1305 60.8 38.4 1374 59.1 18 1237 57.4 78.2 1305 60.8 38.4 1374 59.1 18 1237 57.4 78.2 1305 60.8 38.4 1374 59.1 18 1237 57.4 78.2 1305 60.8 38.4 1374 59.1 18 1237 57.5 55.6 1308 61.3 49.7 1376 58.8 10.5 1240 57.5 55.6 1308 61.3 49.7 1376 58.8 10.5 1240 57.5 55.6 1308 61.3 49.7 1376 58.8 10.5 1240 57.5 57.6 1306 60.8 38.4 1374 59.1 18 1244 58.8 40.6 1311 62.2 45.8 1399 59.1 6.6 28.2 23.3 24.4 24.5 23.3 24.4 24.5 24.5 23.3 24.4 24.5 24.5 23.3 24.4 24.5 24.5 23.3 24.5 24.5 23.5 24.5 23.5 24.5 23.5			*						
1217 56.7 94.4 1285 60.2 7.8 1353 59.6 84.6 1219 57 94.1 1287 60.2 5.9 1354 59.4 66.5 1219 57.7 94.3 1288 59.9 4.6 1355 59.3 75.5 1220 57.7 94.3 1288 59.9 4.6 1355 58.9 49.6 1219 57.5 93.7 1289 59.4 21.5 1357 59.1 75.8 1222 58.4 93.2 1290 59.6 15.8 1358 59 77.6 1224 58.2 93.7 1291 59.3 10.1 1359 59 67.8 1224 58.2 93.7 1292 58.9 9.4 1360 59 56.7 1224 58.5 59.3 1293 58.8 9 1361 58.8 54.2 1226 58.8 86.2 1294 58.9 35.4 1362 58.9 59.6 1228 58.2 59.9 1296 58.9 30.7 1363 58.9 60.8 1228 58.2 59.9 1296 58.9 25.9 1364 59.3 56.1 1229 57.6 8.5 1297 58.7 22.9 1364 59.3 56.1 1229 57.6 8.5 1297 58.7 22.9 1364 59.3 56.1 1231 57.2 74.4 1299 59.3 61 1367 59.4 41.4 1232 57 79.1 1300 60.1 56 1368 59.6 38.9 1233 57.2 74.4 1299 59.3 61 1367 59.4 41.4 1232 57 79.1 1300 60.1 56 1368 59.6 38.9 1233 56.7 67.2 1301 60.5 50.6 1369 39.4 32.9 1233 56.7 67.2 1301 60.5 50.6 1369 39.4 32.9 1235 56.9 71.3 1303 59.7 50 1371 59.4 30 1236 57.7 31304 59.7 50 1371 59.4 30 1236 57.7 57.3 1304 59.7 50 1371 59.4 30 1236 57.7 64 1307 60.9 40.2 1375 58.5 10.6 1238 57.3 70.6 1366 60.8 38.4 1374 59.1 18 1239 57.7 64 1307 60.9 40.2 1375 58.5 10.6 1238 57.3 70.6 1366 60.8 38.4 1374 59.1 18 1239 57.7 64 1307 60.9 40.2 1375 58.5 10.6 1244 58.8 40.6 1311 62.2 45.8 1379 59.1 7.8 1244 58.8 40.6 1311 62.2 45.8 1379 59.1 7.8 1244 58.8 40.6 1311 62.2 45.8 1399 59.6 60.6 22.2 23.3 23.5			•						
1218 56.9 94.8 1228 60.2 5.9 1354 59.4 66.6 1219 57 94.1 1228 60.2 5.3 1355 59.3 75.5 1220 57.7 94.3 1228 59.9 4.6 1356 58.9 49.6 1221 57.5 93.7 1289 59.4 21.5 1357 59.1 75.8 1222 58.4 93.2 1290 59.6 15.8 1358 59.7 77.6 1223 58.7 93.2 1291 59.3 10.1 1359 59 67.8 1224 58.2 93.7 1292 58.9 9.4 1360 59 56.7 1225 58.5 93.1 1293 58.8 9 1361 58.8 54.2 1226 58.8 86.2 1294 58.9 30.7 1363 58.9 60.8 1227 59 72.9 1295 58.9 30.7 1363 58.9 60.8 1229 57.6 8.5 1297 58.7 22.9 1364 59.3 56.1 1229 57.6 8.5 1297 58.7 22.9 1365 58.9 48.5 1230 57.1 47.6 1298 58.7 22.9 1365 58.9 48.5 1231 57.2 74.4 1299 59.3 61 1367 59.4 41.4 1232 37 79.1 1300 60.1 36 1368 59.6 38.9 1234 56.8 69.1 1302 59.5 16.2 1370 59.3 30.6 1234 56.8 69.1 1302 59.5 16.2 1370 59.3 30.6 1235 56.9 77.3 1304 59.7 50.1 1371 59.4 30.1 1236 57 77.3 1304 59.7 31.4 1372 59.4 25.3 1238 57.3 70.6 1306 60.8 38.4 1374 59.1 18.1 1239 57.7 64 1306 60.8 38.4 1374 59.1 18.1 1240 57.5 55.6 1308 61.3 49.7 1376 58.5 10.6 1240 57.5 58.6 49.6 1310 62.2 45.8 1379 59.1 78.8 1241 58.6 49.6 1310 62.2 45.8 1379 59.1 78.8 1242 58.8 40.6 1311 62.2 45.8 1379 59.1 78.8 1243 58.8 40.6 1311 62.2 45.8 1379 59.1 78.8 1244 58.6 49.6 1309 61.8 45.9 1377 58.5 8.2 1245 58.7 24.9 1313 62.7 44.3 1381 59.1 6.6 1246 59.1 44.8 43.8 40.6 1311 62.2 45.8 1379 59.1 78.8 1245 58.8 40.6 1311 62.2 45.8 1379 59.1 78.8 1255 59.1 48.8 49.6 1311 62.2 45.8 1399 60.6 1256 60.1 48.8 1315 60.6 40									
1219			*						
1220			*						
1221 57,5 93,7 1289 59,4 21,5 1357 59,1 75,8 77,6 1223 58,7 93,2 1290 59,6 15,8 1358 59 77,6 1223 58,7 93,2 1291 59,3 10,1 1359 59 67,8 1224 58,2 93,7 1293 58,8 9,4 1360 59 56,7 1225 58,5 93,1 1293 58,8 9,4 1361 58,8 54,2 1226 58,8 86,2 1294 58,9 35,4 1362 58,9 59,6 60,8 1228 58,2 59,9 1296 58,9 30,7 1363 58,9 60,8 1228 58,2 59,9 1296 58,9 25,9 1364 59,3 56,1 1229 57,6 8,5 1227 58,7 22,9 1365 58,9 48,5 1230 57,1 47,6 1298 58,7 24,4 1366 59,3 42,9 1231 57,2 74,4 1299 59,3 60,1 1367 59,4 41,4 1232 57 79,1 1300 60,1 56 1368 59,6 38,9 1234 56,8 69,1 1302 59,5 16,2 1370 59,3 30,6 1235 56,9 71,3 1303 59,7 50 1371 59,4 30,1 1236 57 77,3 1304 59,7 50 1371 59,4 30,1 1236 57,7 76,6 1306 60,8 38,4 1374 59,1 18,1 1239 57,7 64 1307 60,9 40,2 1375 58,5 10,6 1240 57,5 55,6 1308 61,3 49,7 1376 58,8 10,5 1240 57,5 55,6 1308 61,3 49,7 1376 58,8 10,5 1244 58,8 21,1 1310 62 45,9 1377 58,5 10,6 1246 59,1 48,8 1314 62,9 44,4 1382 59,4 13,1 124 58,8 40,6 1311 62,2 44,8 1384 59,1 60,6 24,9 1375 58,5 10,6 1246 59,1 24,8 1314 62,9 44,4 1382 59,4 13,1 124 58,8 41,1 1310 62 45,9 1378 58,7 13,7 1246 58,7 49,9 1318 64,3 49,7 1376 58,8 10,5 1246 59,1 44,4 1382 59,4 41,4 1247 58,6 49,6 1309 61,8 45,9 1377 58,5 59,7 22,3 1244 58,8 41,1 1310 62 45,9 1378 58,7 13,7 136 1368 59,6 41,1 1310 62 45,9 1377 58,5 59,6 41,1 1310 62 45,9 1377 58,5 59,6 41,1 1310 63,5 46,1 1384 60,7 13,5 59,6 41,1 1310 63,6 22,1 1394 59,8 41,6 60,6 43,7 1384 60,6 22,2 1356 60,6 44,4 1382			*						
1222 58.4 93.2 1290 59.6 15.8 1358 59 77.6 1224 58.2 93.7 1292 58.9 9.4 1360 59 56.7 1225 58.5 93.1 1293 58.8 9 1361 58.8 54.2 1226 58.8 86.2 1294 58.9 35.4 1362 58.9 59.6 1227 59 72.9 1295 58.9 30.7 1363 58.9 60.8 1228 58.2 59.9 1296 58.9 22.9 1364 59.3 56.1 1229 57.6 8.5 1297 58.7 22.9 1365 58.9 48.5 1230 57.1 47.6 1298 58.7 22.9 1365 58.9 48.5 1231 57.2 74.4 1299 59.3 61 1367 59.4 41.4 1232 57 79.1 1300 60.1 56 1368 59.6 38.9 1234 56.8 69.1 1302 59.5 16.2 1370 59.3 30.6 1234 56.8 69.1 1302 59.5 16.2 1370 59.3 30.6 1235 56.9 77.3 1304 59.7 50 1371 59.4 30 1236 57 77.3 1304 59.7 50 1371 59.4 30 1237 57.4 78.2 1305 60.8 38.4 1374 59.1 18 1238 57.3 70.6 1306 60.8 38.4 1374 59.1 18 1239 57.7 64 1307 60.9 40.2 1375 58.5 10.6 1241 58.6 49.6 1309 61.8 45.9 1377 58.5 10.6 1241 58.6 49.6 1309 61.8 45.9 1377 58.5 10.6 1244 58.3 21.1 1312 62.6 46.8 1380 59.1 6.1 1245 58.7 24.9 1313 62.7 44.3 1381 59.1 6.1 1246 59.1 24.8 1314 62.9 44.4 1382 59.4 13.1 1247 58.6 49.6 1309 61.8 45.9 1378 58.7 13.7 1248 58.8 40.6 1311 62.2 45.8 1379 59.1 7.8 1249 58.8 40.6 1311 62.7 44.3 1381 59.1 6 1246 59.1 24.8 1314 62.9 44.4 1382 59.4 13.1 1247 58.6 49.6 1309 61.8 45.9 1378 59.9 8.7 1248 58.8 40.6 1311 62.2 45.8 1379 59.1 6 1249 58.8 40.6 40.7 40.7 40.7 40.7 40.7 1255 59.6 40.8 1314 62.9 44.4 1382 59.4 41.1 1267 59.7 40.8 1322 63.8 40.5 1386 60.2 8.8 1251 59.1 40.8 61.3 60.1 60.7 60.7 60.6 60.2 8.8 1256 60			*						
1223			*						
1224 58,2 93,7 1292 58,9 9,4 1360 59 56,7 1226 58,8 86,2 1294 58,9 35,4 1362 58,9 59,6 1227 59 72,9 1295 58,9 30,7 1363 58,9 60,8 1228 58,6 59,9 1296 58,9 25,9 1364 59,3 56,1 1229 57,6 8,5 1297 58,7 22,9 1365 58,9 48,5 1230 57,1 47,6 1298 58,7 24,4 1366 59,3 42,9 1231 57,2 74,4 1299 59,3 61 1367 59,4 41,4 1232 57 79,1 1300 60,1 56 1368 59,6 38,9 1233 56,7 67,2 1301 60,5 50,6 1369 59,4 42,9 1234 56,8 69,1 1302 59,5 16,2 1370 59,3 30,6 1235 56,9 77,3 1304 59,7 50 1371 59,4 1236 57 77,3 1304 59,7 50 1371 59,4 43,9 1238 57,3 70,6 1306 60,8 38,4 1374 59,1 18 1239 57,7 64 1307 60,9 40,2 1375 58,5 10,6 1240 57,5 55,6 1308 61,3 49,7 1376 58,8 10,5 1241 58,6 49,6 1309 61,8 45,9 1377 58,5 10,6 1242 58,2 41,1 1310 62,2 44,3 1381 59,1 6 1243 58,8 40,6 1311 62,2 44,3 1381 59,1 6 1244 58,8 40,6 1311 62,2 44,8 1384 60,7 10,5 1245 58,7 24,9 1313 62,7 44,3 1381 59,1 6 1246 59,1 24,8 1314 62,9 44,4 1382 59,4 13,1 1247 58,8 40,6 1311 62,2 44,8 1384 60,7 10,5 1248 58,8 4m 1316 63,5 46,1 1384 60,7 10,5 1249 58,8 4m 1316 63,5 46,1 1384 60,7 10,5 1249 58,8 4m 1316 63,5 46,1 1384 60,7 10,5 1259 58,7 4m 1319 63,6 40,7 1385 59,8 8,7 1250 58,7 4m 1316 63,6 40,7 1385 59,8 8,7 1251 59,1 4m 1319 63,6 40,7 1385 59,8 8,7 1252 59,6 4m 1324 63,8 14,1 1396 60,6 88,8 1251 59,1 4m 1319 63,7 27 1387 59,9 8,7 1252 59,6 4m 1324 63,8 40,6 1399 61,8 1253 59,6 4m 1324 63,8 40,6 1399 61,8 1254 59,6 4m 1324 63,3 1400 61			•						
1225 58,5 93,1 1293 58,8 9 1361 58,8 54,2 1226 58,8 86,2 1294 58,9 35,4 1362 58,9 59,6 1227 59 72,9 1295 58,9 30,7 1363 58,9 60,8 1228 58,2 59,9 1296 58,9 25,9 1364 59,3 56,1 1230 57,6 8,5 1297 58,7 22,9 1365 58,9 48,5 1230 57,1 47,6 1298 58,7 22,9 1365 58,9 48,5 1230 57,1 47,6 1298 58,7 24,4 1366 59,3 42,9 1231 57,2 74,4 1299 59,3 61 1367 59,4 41,4 1232 57 79,1 1300 60,1 56 1368 59,6 38,9 1233 56,7 67,2 1301 60,5 50,6 1369 59,4 32,9 1234 56,8 69,1 1302 59,5 16,2 1370 59,3 30,6 1235 56,9 71,3 1303 59,7 50 1371 59,4 30 1236 57 77,3 1304 59,7 31,4 1372 59,4 25,3 1237 57,4 78,2 1305 60,1 43,1 1373 58,8 18,6 1238 57,3 70,6 1306 60,8 38,4 1374 59,1 18 1239 57,7 64 1307 60,9 40,2 1375 58,5 10,6 1240 57,5 55,6 1308 61,3 49,7 1376 58,8 10,5 1240 57,5 55,6 1309 61,8 45,9 1377 58,5 10,6 1241 58,6 49,6 130 62,2 45,9 1378 58,7 13,7 1243 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1244 58,3 21,1 1312 62,6 46,8 1380 59,1 6 1245 58,7 24,9 1313 62,7 44,4 1382 59,4 13,1 1247 58,6 49,6 130 63,5 44,1 1382 59,4 13,1 1247 58,6 49,6 130 63,5 44,1 1382 59,1 6 1248 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1249 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1249 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1249 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1249 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1249 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1249 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1249 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1249 58,8 40,6 1311 62,2 45,8 1388 60,2 8,8 1250 58,7 40,9 1313 62,7 7 1387 59,9 8,7 1252 59,1 40,9 1313 62,7 7 1387 59,9 8,8 1250 58,7 40,9 1313 62,7 7 1387 59,9 8,8 1250 58,7 40,9 1313 62,7 7 1387 59,9 8,8 1250 58,7 40,9 1313 62,7 7 1387 59,9 8,8 1250 58,7 40,9 1313 62,7 7 1387 59,9 8,8 1250 58,7 40,9 1313 62,7 13,9 13,9 60,6 22,2 1255 59,6 40,9 132,0 63,8 15 1388 61 9,1 1257 59,6 40,9 132,0 63,8 15 1388 61 9,1 1257 59,6 40,9 132,0 63,8 15 1388 61 9,1 1257 59,6 40,9 132,0 63,8 15 1388 61,9 1,0 5,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6						-			
1227 59 72.9 1295 58.9 30.7 1363 58.9 60.8 1228 58.2 59.9 1296 58.9 25.9 1364 59.3 56.1 1229 57.6 8.5 1297 58.7 22.9 1365 58.9 48.5 1230 57.1 47.6 1298 58.7 22.9 1365 58.9 48.5 1231 57.2 74.4 1299 59.3 61 1367 59.4 41.4 1232 57 79.1 1300 60.1 56 1368 59.6 38.9 1233 56.8 69.1 1302 59.5 16.2 1370 59.3 30.6 1234 56.8 69.7 1,3 1303 59.7 50 1371 59.4 25.3 1234 56.8 69.7 1,3 1302 59.7 50 1371 59.4 25.3 1234 58.7 <						9	1361		
1228 58,2 59,9 1296 58,9 25,9 1364 59,3 56,1 1229 57,6 8,5 1297 58,7 22,9 1365 58,9 48,5 1231 57,2 74,4 1299 59,3 61 1367 59,4 41,4 1232 57 79,1 1300 60,1 56 1368 59,6 38,9 1233 56,7 67,2 1301 60,5 50,6 1369 59,4 32,9 1234 56,8 69,1 1302 59,5 16,2 1370 59,3 30,6 1235 56,9 71,3 1303 59,7 50 1371 59,4 30 1236 57 77,3 1304 59,7 510 1371 59,4 30 1237 57,4 78,2 1305 60,1 43,1 1372 59,4 25,3 1238 57,3 70,6 1306 60,8 38,4 1374 59,1 18 1239 57,7 64 1307 60,9 40,2 1375 58,5 10,6 1240 57,5 55,6 1308 61,3 49,7 1376 58,8 10,5 1241 58,6 49,6 1309 61,8 45,9 1377 58,5 8,2 1242 58,2 41,1 1310 62 45,9 1378 58,5 8,2 1243 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1244 58,3 21,1 1312 62,6 46,8 1380 59,1 6 1244 59,1 24,8 1314 62,9 44,4 1382 59,4 13,1 1245 58,6 4m 1315 63,1 43,7 1385 59,8 8,7 1246 59,1 24,8 1314 62,9 44,4 1382 59,4 13,1 1247 58,6 4m 1315 63,1 43,7 1385 59,8 8,7 1255 59,1 4m 1319 63,7 27 1387 59,9 8,7 1252 59,1 4m 1320 63,8 15 1388 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22 1255 59,6 4m 1321 63,6 40,7 1385 59,8 8,8 1251 59,1 4m 1320 63,8 15 1388 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22 1255 59,6 4m 1320 63,8 15 1389 60,6 28,2 1255 59,6 4m 1326 63 22,1 1394 59,6 19 1257 60,6 4,9 1332 60,8 40,3 1400 61,4 51,3 1266 59,9 6,1 1334 60,7 16,6 1403 61,4 51,5 1267 59,6 4m 1330 60,9 22,3 1407 61,4 69,4 1273 60,6 6,2 1340 61,4 35,8 1408 61,6 60,9 1270 59,8 10,3 1338 60,9 22	1226			1294	58,9	35,4	1362		
1229	1227		72,9	1295			1363		
1230									
1231									
1232 57			*						
1233 56,7 67,2 1301 60,5 50,6 1369 59,4 32,9 1234 56,8 69,1 1302 59,5 16,2 1370 59,3 30,6 1235 56,9 71,3 1304 59,7 50 1371 59,4 30 1236 57 77,3 1304 59,7 31,4 1372 59,4 25,3 1237 57,4 78,2 1305 60,1 43,1 1373 58,8 18,6 1238 57,3 70,6 1306 60,8 38,4 1374 59,1 18 1239 57,7 64 1307 60,9 40,2 1375 58,5 10,5 1240 57,5 55,6 1309 61,8 45,9 1377 58,5 8,2 1241 58,6 49,6 1309 61,8 45,9 1378 58,7 13,7 1242 58,2 41,1 1310			*						
1234 56,8 69,1 1302 59,5 16,2 1370 59,3 30,6 1235 56,9 71,3 1303 59,7 50 1371 59,4 30 30 1236 57 77,3 1304 59,7 31,4 1372 59,4 25,3 1237 57,4 78,2 1305 60,1 43,1 1373 58,8 18,6 1238 57,3 70,6 1306 60,8 38,4 1374 59,1 18 1239 57,7 64 1307 60,9 40,2 1375 58,5 10,6 1240 57,5 55,6 1308 61,3 49,7 1376 58,8 10,5 1241 58,6 49,6 1309 61,8 45,9 1377 58,5 8,2 1242 58,2 41,1 1310 62 45,8 1379 59,1 7,8 1244 58,3 21,1 1312 62,6 46,8 1380 59,1 6 1245 58,7 24,9 1313 62,7 44,3 1381 59,1 6 1246 59,1 24,8 1314 62,9 44,4 1382 59,4 13,1 1247 58,6 ms 1315 63,1 43,7 1383 59,7 22,3 1248 58,8 ms 1316 63,5 46,1 1384 60,7 10,5 1249 58,8 ms 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 ms 1318 64,3 49,5 1386 60,2 8,8 1251 59,1 ms 1320 63,8 15 1388 61 9,1 1253 59,4 ms 1322 63,4 8,4 1390 60,6 22,2 1255 60,6 2,6 1322 63,4 8,4 1390 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 28,2 1257 60,6 ms 1325 62,9 19,7 1393 60,6 28,2 1257 60,6 ms 1325 62,9 19,7 1393 60,6 28,2 1257 60,6 ms 1322 63,4 8,4 1390 60,6 22,2 1255 60,1 ms 1320 63,8 15 1388 61 9,1 1257 60,6 ms 1322 63,4 8,4 1390 60,6 28,2 1257 60,6 ms 1322 63,4 8,4 1390 60,6 28,2 1257 60,6 ms 1323 63,2 8,7 1391 59,6 60,6 28,2 1257 60,6 ms 1323 61,2 22 1399 61,2 38,3 1260 60,5 ms 1328 61,8 19,1 1396 60,5 55,4 1260 60,5 ms 1328 61,8 19,1 1396 60,5 55,4 1260 59,9 61,1 1334 60,7 16,1 1402 61,4 71,1 1268 59,6 ms 1336 60,5 18,5 1404 61,5 56,6 1269 59,7 22 1337 60,6 2									
1235 56,9 71,3 1303 59,7 50 1371 59,4 30 1236 57 77,3 1304 59,7 31,4 1372 59,4 25,3 1238 57,3 70,6 1306 60,8 38,4 1374 59,1 18 1239 57,7 64 1307 60,9 40,2 1375 58,5 10,6 1240 57,5 55,6 1308 61,3 49,7 1376 58,8 10,5 1241 58,6 49,6 1309 61,8 45,9 1377 58,5 8,2 1242 58,2 41,1 1310 62 45,9 1378 58,7 13,7 1243 58,8 40,6 1311 62,2 45,8 1379 59,1 6 1244 58,3 21,1 1312 62,6 46,8 1380 59,1 6 1244 58,3 21,1 1315 6									
1236 57 77,3 1304 59,7 31,4 1372 59,4 25,3 1237 57,4 78,2 1305 60,1 43,1 1373 58,8 18,6 1238 57,3 70,6 1306 60,9 40,2 1375 58,5 10,6 1240 57,5 55,6 1308 61,3 49,7 1376 58,8 10,5 1241 58,6 49,6 1309 61,8 45,9 1378 58,7 13,7 1242 58,2 41,1 1310 62 45,9 1378 58,7 13,7 1243 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1244 58,3 21,1 1312 62,6 46,8 1380 59,1 6 1245 58,7 24,9 1313 62,7 44,3 1381 59,1 6 1246 59,1 24,8 1314									
1237 57,4 78,2 1305 60,1 43,1 1373 58,8 18,6 1238 57,3 70,6 1306 60,8 38,4 1374 59,1 18 1239 57,7 64 1307 60,9 40,2 1375 58,5 10,6 1240 57,5 55,6 1308 61,3 49,7 1376 58,8 10,5 1241 58,6 49,6 1309 61,8 45,9 1377 58,5 8,2 1242 58,2 41,1 1310 62 45,9 1378 58,7 13,7 1243 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1244 58,3 21,1 1312 62,6 46,8 1380 59,1 6 1246 59,1 24,8 1314 62,9 44,4 1382 59,4 13,1 1247 58,6 4m 1315 63,1 43,7 1383 59,7 22,3 1248 58,8 4m 1315 63,1 43,7 1383 59,7 22,3 1249 58,8 4m 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 4m 1318 64,3 49,5 1386 60,2 8,8 1251 59,1 4m 1320 63,8 15 1388 61 9,1 1253 59,4 4m 1321 63,6 40,7 1385 59,8 9,8 1250 58,7 4m 1320 63,8 15 1388 61 9,1 1253 59,4 4m 1321 63,6 18,7 1389 60,6 28,2 1255 59,6 4m 1324 63,3 21,6 1392 59,6 19 1257 60,6 4,1 1326 63 22,1 1394 59,6 19 1257 60,6 4,1 1326 63 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1 20,3 1395 60 47,3 1266 60,1 59,7 4m 1329 61,6 17,1 1397 60,9 58,7 1266 60,1 59,7 4m 1320 63,8 40,3 1400 61,4 58,7 1266 59,6 4m 1325 62,9 19,7 1393 60,6 47,3 1266 59,6 4m 1327 63,1 20,3 1395 60 47,3 1266 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1266 59,6 4m 1326 63 22,1 1394 59,8 41,6 61,6 59,9 61,1 1334 60,7 60,6 22,2 1397 60,6 55,4 41,6 63,5 64,6 64,9 64,9 1332 60,8 40,3 1400 61,4 58,7 1266 59,6 4m 1335 60,6 16,6 1403 61,1 51 1266 59,9 61,1 1334 60,7 60,6 22,8 1405 61 60,6 62,2 1340 61,4 35,8 1405 61,6 69,9 61,2 59,6 61,6 60,6 62,2 1340 61,4 35,8 1405 61,6 69,9									
1238 57,3 70,6 1306 60,8 38,4 1374 59,1 18 1239 57,7 64 1307 60,9 40,2 1375 58,5 10,6 61,6 1314 58,6 49,6 1309 61,8 45,9 1377 58,5 8,2 1241 58,6 49,6 1309 61,8 45,9 1377 58,5 8,2 1242 58,2 41,1 1310 62 45,9 1378 58,7 13,7 7,8 1244 58,3 21,1 1312 62,6 46,8 1380 59,1 6 1245 58,7 24,9 1313 62,2 44,4 1382 59,4 13,1 1247 58,6 4m 1315 63,1 43,7 1383 59,7 22,3 1248 58,8 4m 1315 63,1 43,7 1383 59,7 22,3 1248 58,8 4m 1316 63,5 46,1 1384 60,7 10,5 1249 58,8 4m 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 4m 1319 63,7 27 1387 59,9 8,7 1252 59,1 4m 1320 63,8 15 1388 61 9,1 1253 59,4 4m 1321 63,6 48,4 1390 60,6 22 1255 59,6 4m 1323 63,2 8,7 1391 59,6 23,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22 1255 59,6 4m 1323 63,2 8,7 1391 59,6 23,2 1258 59,6 41,1 1326 63 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1 20,3 1395 60,0 47,3 1260 60,5 4m 1324 63,3 21,6 1392 59,6 19 1257 60,6 4m 1324 63,3 21,6 1392 59,6 19 1257 60,6 4m 1324 63,3 21,6 1392 59,6 19 1257 60,6 4m 1325 62,9 19,7 1393 60,6 38,4 1258 59,6 4,1 1326 63 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1 20,3 1395 60 47,3 1260 60,5 4m 1330 61 0 1398 61,3 37,9 1260 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1261 59,7 4m 1330 61,0 1398 61,3 37,9 1263 59,8 4m 1331 61,2 22 1399 61,2 38,3 1264 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1266 59,9 41,1 1336 60,5 18,5 1406 61,1 75,4 1267 59,7 4m 1335 60,6 16,6 1403 61,1 51 1268 59,6 4m 1335 60,6 16,6 1403 61,1 51 1268 59,6 4m 1335 60,6 16,6 1403 61,1									
1239 57,7 64 1307 60,9 40,2 1375 58,5 10,6 1240 57,5 55,6 1308 61,3 49,7 1376 58,8 10,5 1241 58,6 49,6 1309 61,8 45,9 1377 58,5 8,2 1242 58,2 41,1 1310 62 45,9 1378 58,7 13,7 1243 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1244 58,3 21,1 1312 62,6 46,8 1380 59,1 6 1245 58,7 24,9 1313 62,7 44,3 1381 59,1 6 1246 59,1 24,8 1314 62,9 44,4 1382 59,4 13,1 1247 58,6 4m 1315 63,1 43,7 1383 59,7 22,3 1248 58,8 4m 1316 63,5 46,1 1384 60,7 10,5 1249 58,8 4m 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 4m 1319 63,7 27 1387 59,9 8,7 1251 59,1 4m 1320 63,8 15 1388 61 9,1 1252 59,1 4m 1321 63,6 18,7 1390 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 28,2 1255 59,6 4m 1323 63,2 8,7 1391 59,6 23,2 1256 60,1 4m 1324 63,3 21,6 1392 59,6 19 1257 60,6 4,1 1326 63 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1 20,3 1395 60 47,3 1260 60,5 4,9 1332 60,8 40,3 1400 61,4 58,7 1261 59,7 4m 1331 61,2 22 1399 61,2 38,3 1264 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1267 59,6 4m 1335 60,6 16,6 1403 61,1 51 1268 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1269 59,6 4m 1335 60,6 16,6 1403 61,1 51 1268 59,6 4m 1336 60,5 18,5 1406 61,1 75,4 1267 59,7 4m 1336 60,5 18,5 1406 61,1 75,4 1267 59,9 10 1339 60,9 22,3 1407 61,4 69,4 1271 59,9 10 1339 60,9 22,3 1407 61,4 69,4 1272 60,6 6,2 1340 61,4 35,8 1408 61,6 69,9 1273 60,6 7,3 1341 61,3 42,9 1409 61,7 59,6									
1240			•						
1241 58,6 49,6 1309 61,8 45,9 1377 58,5 8.2 1242 58,2 41,1 1310 62 45,8 1378 58,7 13,7 1244 58,3 21,1 1312 62,6 46,8 1380 59,1 6 1245 58,7 24,9 1313 62,7 44,3 1381 59,1 6 1246 59,1 24,8 1314 62,9 44,4 1382 59,4 13,1 1247 58,6 «m» 1315 63,1 43,7 1383 59,7 22,3 1248 58,8 «m» 1316 63,5 46,1 1384 60,7 10,5 1249 58,8 «m» 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 «m» 1319 63,7 27 1387 59,9 8,7 1252 59,1 «m» 1320									
1242 58,2 41,1 1310 62 45,8 1378 58,7 13,7 1243 58,8 40,6 1311 62,2 45,8 1379 59,1 7,8 1244 58,3 21,1 1312 62,6 46,8 1380 59,1 6 1245 58,7 24,9 1313 62,7 44,3 1381 59,1 6 1246 59,1 24,8 1314 62,9 44,4 1382 59,4 13,1 1247 58,6 *m* 1315 63,1 43,7 1383 59,7 22,3 1249 58,8 *m* 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 *m* 1318 64,3 49,5 1386 60,7 10,5 1249 58,8 *m* 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 *m* 1319 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
1244 58,3 21,1 1312 62,6 46,8 1380 59,1 6 1245 58,7 24,9 1313 62,7 44,3 1381 59,1 6 1246 59,1 24,8 1314 62,9 44,4 1382 59,4 13,1 1247 58,6 «m» 1315 63,1 43,7 1383 59,7 22,3 1248 58,8 «m» 1316 63,5 46,1 1384 60,7 10,5 1249 58,8 «m» 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 «m» 1318 64,3 49,5 1386 60,2 8,8 1251 59,1 «m» 1320 63,8 15 1388 61 9,1 1253 59,4 «m» 1321 63,6 18,7 1389 60,6 28,2 1254 60,6 2,6 1322 63	1242		41,1	1310			1378		
1245 58,7 24,9 1313 62,7 44,3 1381 59,1 6 1246 59,1 24,8 1314 62,9 44,4 1382 59,4 13,1 1247 58,6 «m» 1315 63,1 43,7 1383 59,7 22,3 1248 58,8 «m» 1316 63,5 46,1 1384 60,7 10,5 1249 58,8 «m» 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 «m» 1318 64,3 49,5 1386 60,2 8,8 1251 59,1 «m» 1320 63,8 15 1388 61 9,1 1253 59,4 «m» 1321 63,6 18,7 1389 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22,2 1255 59,6 «m» 1323 6	1243	58,8	40,6	1311	62,2	45,8	1379	59,1	7,8
1246 59,1 24,8 1314 62,9 44,4 1382 59,4 13,1 1247 58,6 «m» 1315 63,1 43,7 1383 59,7 22,3 1248 58,8 «m» 1316 63,5 46,1 1384 60,7 10,5 1249 58,8 «m» 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 «m» 1318 64,3 49,5 1386 60,2 8,8 1251 59,1 «m» 1320 63,8 15 1388 61 9,1 1252 59,1 «m» 1321 63,6 18,7 1389 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22,2 1255 59,6 «m» 1323 63,2 8,7 1391 59,6 19 1257 60,6 «m» 1326 63				1312			1380		
1247 58,6 *m* 1315 63,1 43,7 1383 59,7 22,3 1248 58,8 *m* 1316 63,5 46,1 1384 60,7 10,5 1249 58,8 *m* 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 *m* 1318 64,3 49,5 1386 60,2 8,8 1251 59,1 *m* 1319 63,7 27 1387 59,9 8,7 1252 59,1 *m* 1320 63,8 15 1388 61 9,1 1253 59,4 *m* 1321 63,6 18,7 1389 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22,2 1255 59,6 *m* 1323 63,2 8,7 1391 59,6 19 1257 60,6 *m* 1325 62,9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1248 58,8 «m» 1316 63,5 46,1 1384 60,7 10,5 1249 58,8 «m» 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 «m» 1318 64,3 49,5 1386 60,2 8,8 1251 59,1 «m» 1319 63,7 27 1387 59,9 8,7 1252 59,1 «m» 1320 63,8 15 1388 61 9,1 1253 59,4 «m» 1321 63,6 18,7 1389 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22,2 1255 59,6 «m» 1324 63,3 21,6 1392 59,6 19 1256 60,1 «m» 1324 63,3 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1<			24,8						
1249 58,8 «m» 1317 63,6 40,7 1385 59,8 9,8 1250 58,7 «m» 1318 64,3 49,5 1386 60,2 8,8 1251 59,1 «m» 1319 63,7 27 1387 59,9 8,7 1252 59,1 «m» 1320 63,8 15 1388 61 9,1 1253 59,4 «m» 1321 63,6 18,7 1389 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22,2 1255 59,6 «m» 1323 63,2 8,7 1391 59,6 23,2 1256 60,1 «m» 1324 63,3 21,6 1392 59,6 19 1257 60,6 «m» 1326 62,9 19,7 1393 60,6 38,4 1258 59,6 4,1 1326 63 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1250 58,7 «m» 1318 64,3 49,5 1386 60,2 8,8 1251 59,1 «m» 1319 63,7 27 1387 59,9 8,7 1252 59,1 «m» 1320 63,8 15 1388 61 9,1 1253 59,4 «m» 1321 63,6 18,7 1389 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22,2 1255 59,6 «m» 1323 63,2 8,7 1391 59,6 23,2 1256 60,1 «m» 1324 63,3 21,6 1392 59,6 19 1257 60,6 «m» 1325 62,9 19,7 1393 60,6 38,4 1258 59,6 4,1 1326 63 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1251 59,1 «m» 1319 63,7 27 1387 59,9 8,7 1252 59,1 «m» 1320 63,8 15 1388 61 9,1 1253 59,4 «m» 1321 63,6 18,7 1389 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22 1255 59,6 «m» 1323 63,2 8,7 1391 59,6 23,2 1256 60,1 «m» 1324 63,3 21,6 1392 59,6 19 1257 60,6 «m» 1325 62,9 19,7 1393 60,6 38,4 1258 59,6 4,1 1326 63 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1 20,3 1395 60 47,3 1260 60,5 «m» 1328 61,8									
1252 59,1 «m» 1320 63,8 15 1388 61 9,1 1253 59,4 «m» 1321 63,6 18,7 1389 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22 1255 59,6 «m» 1323 63,2 8,7 1391 59,6 23,2 1256 60,1 «m» 1324 63,3 21,6 1392 59,6 19 1257 60,6 «m» 1325 62,9 19,7 1393 60,6 38,4 1258 59,6 4,1 1326 63 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1 20,3 1395 60 47,3 1260 60,5 «m» 1328 61,8 19,1 1396 60,5 55,4 1261 59,7 «m» 1329 61,6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1253 59,4 «m» 1321 63,6 18,7 1389 60,6 28,2 1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22 1255 59,6 «m» 1323 63,2 8,7 1391 59,6 23,2 1256 60,1 «m» 1324 63,3 21,6 1392 59,6 19 1257 60,6 «m» 1325 62,9 19,7 1393 60,6 38,4 1258 59,6 4,1 1326 63 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1 20,3 1395 60 47,3 1260 60,5 «m» 1328 61,8 19,1 1396 60,5 55,4 1261 59,7 «m» 1329 61,6 17,1 1397 60,9 58,7 1262 59,6 «m» 1330 61									
1254 60,6 2,6 1322 63,4 8,4 1390 60,6 22 1255 59,6 «m» 1323 63,2 8,7 1391 59,6 23,2 1256 60,1 «m» 1324 63,3 21,6 1392 59,6 19 1257 60,6 «m» 1325 62,9 19,7 1393 60,6 38,4 1258 59,6 4,1 1326 63 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1 20,3 1395 60 47,3 1260 60,5 «m» 1328 61,8 19,1 1396 60,5 55,4 1261 59,7 «m» 1329 61,6 17,1 1397 60,9 58,7 1262 59,6 «m» 1330 61 0 1398 61,3 37,9 1263 59,8 «m» 1331 61,2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1255 59,6 «m» 1323 63,2 8,7 1391 59,6 23,2 1256 60,1 «m» 1324 63,3 21,6 1392 59,6 19 1257 60,6 «m» 1325 62,9 19,7 1393 60,6 38,4 1258 59,6 4,1 1326 63 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1 20,3 1395 60 47,3 1260 60,5 «m» 1328 61,8 19,1 1396 60,5 55,4 1261 59,7 «m» 1329 61,6 17,1 1397 60,9 58,7 1262 59,6 «m» 1330 61 0 1398 61,3 37,9 1263 59,8 «m» 1331 61,2 22 1399 61,2 38,3 1264 59,6 4,9 1332 60,8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1256 60,1 «m» 1324 63,3 21,6 1392 59,6 19 1257 60,6 «m» 1325 62,9 19,7 1393 60,6 38,4 1258 59,6 4,1 1326 63 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1 20,3 1395 60 47,3 1260 60,5 «m» 1328 61,8 19,1 1396 60,5 55,4 1261 59,7 «m» 1329 61,6 17,1 1397 60,9 58,7 1262 59,6 «m» 1330 61 0 1398 61,3 37,9 1263 59,8 «m» 1331 61,2 22 1399 61,2 38,3 1264 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1265 60,1 5,9 1333 61,1<			*						
1258 59,6 4,1 1326 63 22,1 1394 59,8 41,6 1259 60,7 7,1 1327 63,1 20,3 1395 60 47,3 1260 60,5 «m» 1328 61,8 19,1 1396 60,5 55,4 1261 59,7 «m» 1329 61,6 17,1 1397 60,9 58,7 1262 59,6 «m» 1330 61 0 1398 61,3 37,9 1263 59,8 «m» 1331 61,2 22 1399 61,2 38,3 1264 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1265 60,1 5,9 1333 61,1 34,3 1401 61,3 51,3 1266 59,9 6,1 1334 60,7 16,1 1402 61,4 71,1 1267 59,7 «m» 1336 60,									
1259 60,7 7,1 1327 63,1 20,3 1395 60 47,3 1260 60,5 «m» 1328 61,8 19,1 1396 60,5 55,4 1261 59,7 «m» 1329 61,6 17,1 1397 60,9 58,7 1262 59,6 «m» 1330 61 0 1398 61,3 37,9 1263 59,8 «m» 1331 61,2 22 1399 61,2 38,3 1264 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1265 60,1 5,9 1333 61,1 34,3 1401 61,3 51,3 1266 59,9 6,1 1334 60,7 16,1 1402 61,4 71,1 1267 59,7 «m» 1335 60,6 16,6 1403 61,1 51 1268 59,6 «m» 1336 60,	1257	60,6	«m»	1325	62,9	19,7	1393	60,6	38,4
1260 60,5 «m» 1328 61,8 19,1 1396 60,5 55,4 1261 59,7 «m» 1329 61,6 17,1 1397 60,9 58,7 1262 59,6 «m» 1330 61 0 1398 61,3 37,9 1263 59,8 «m» 1331 61,2 22 1399 61,2 38,3 1264 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1265 60,1 5,9 1333 61,1 34,3 1401 61,3 51,3 1266 59,9 6,1 1334 60,7 16,1 1402 61,4 71,1 1267 59,7 «m» 1335 60,6 16,6 1403 61,1 51 1268 59,6 «m» 1336 60,5 18,5 1404 61,5 56,6 1269 59,7 22 1337 60	1258		4,1	1326	63		1394	59,8	41,6
1261 59,7 «m» 1329 61,6 17,1 1397 60,9 58,7 1262 59,6 «m» 1330 61 0 1398 61,3 37,9 1263 59,8 «m» 1331 61,2 22 1399 61,2 38,3 1264 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1265 60,1 5,9 1333 61,1 34,3 1401 61,3 51,3 1266 59,9 6,1 1334 60,7 16,1 1402 61,4 71,1 1267 59,7 «m» 1335 60,6 16,6 1403 61,1 51 1268 59,6 «m» 1336 60,5 18,5 1404 61,5 56,6 1269 59,7 22 1337 60,6 29,8 1405 61 60,6 1270 59,8 10,3 1338 60,			7,1						
1262 59,6 «m» 1330 61 0 1398 61,3 37,9 1263 59,8 «m» 1331 61,2 22 1399 61,2 38,3 1264 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1265 60,1 5,9 1333 61,1 34,3 1401 61,3 51,3 1266 59,9 6,1 1334 60,7 16,1 1402 61,4 71,1 1267 59,7 «m» 1335 60,6 16,6 1403 61,1 51 1268 59,6 «m» 1336 60,5 18,5 1404 61,5 56,6 1269 59,7 22 1337 60,6 29,8 1405 61 60,6 1270 59,8 10,3 1338 60,9 19,5 1406 61,1 75,4 1271 59,9 10 1339 60,9			«m»						
1263 59,8 «m» 1331 61,2 22 1399 61,2 38,3 1264 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1265 60,1 5,9 1333 61,1 34,3 1401 61,3 51,3 1266 59,9 6,1 1334 60,7 16,1 1402 61,4 71,1 1267 59,7 «m» 1335 60,6 16,6 1403 61,1 51 1268 59,6 «m» 1336 60,5 18,5 1404 61,5 56,6 1269 59,7 22 1337 60,6 29,8 1405 61 60,6 1270 59,8 10,3 1338 60,9 19,5 1406 61,1 75,4 1271 59,9 10 1339 60,9 22,3 1407 61,4 69,4 1272 60,6 6,2 1340 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
1264 59,6 4,9 1332 60,8 40,3 1400 61,4 58,7 1265 60,1 5,9 1333 61,1 34,3 1401 61,3 51,3 1266 59,9 6,1 1334 60,7 16,1 1402 61,4 71,1 1267 59,7 «m» 1335 60,6 16,6 1403 61,1 51 1268 59,6 «m» 1336 60,5 18,5 1404 61,5 56,6 1269 59,7 22 1337 60,6 29,8 1405 61 60,6 1270 59,8 10,3 1338 60,9 19,5 1406 61,1 75,4 1271 59,9 10 1339 60,9 22,3 1407 61,4 69,4 1272 60,6 6,2 1340 61,4 35,8 1408 61,6 69,9 1273 60,5 7,3 1341 <									
1265 60,1 5,9 1333 61,1 34,3 1401 61,3 51,3 1266 59,9 6,1 1334 60,7 16,1 1402 61,4 71,1 1267 59,7 «m» 1335 60,6 16,6 1403 61,1 51 1268 59,6 «m» 1336 60,5 18,5 1404 61,5 56,6 1269 59,7 22 1337 60,6 29,8 1405 61 60,6 1270 59,8 10,3 1338 60,9 19,5 1406 61,1 75,4 1271 59,9 10 1339 60,9 22,3 1407 61,4 69,4 1272 60,6 6,2 1340 61,4 35,8 1408 61,6 69,9 1273 60,5 7,3 1341 61,3 42,9 1409 61,7 59,6									
1266 59,9 6,1 1334 60,7 16,1 1402 61,4 71,1 1267 59,7 «m» 1335 60,6 16,6 1403 61,1 51 1268 59,6 «m» 1336 60,5 18,5 1404 61,5 56,6 1269 59,7 22 1337 60,6 29,8 1405 61 60,6 1270 59,8 10,3 1338 60,9 19,5 1406 61,1 75,4 1271 59,9 10 1339 60,9 22,3 1407 61,4 69,4 1272 60,6 6,2 1340 61,4 35,8 1408 61,6 69,9 1273 60,5 7,3 1341 61,3 42,9 1409 61,7 59,6									
1267 59,7 «m» 1335 60,6 16,6 1403 61,1 51 1268 59,6 «m» 1336 60,5 18,5 1404 61,5 56,6 1269 59,7 22 1337 60,6 29,8 1405 61 60,6 1270 59,8 10,3 1338 60,9 19,5 1406 61,1 75,4 1271 59,9 10 1339 60,9 22,3 1407 61,4 69,4 1272 60,6 6,2 1340 61,4 35,8 1408 61,6 69,9 1273 60,5 7,3 1341 61,3 42,9 1409 61,7 59,6									
1268 59,6 «m» 1336 60,5 18,5 1404 61,5 56,6 1269 59,7 22 1337 60,6 29,8 1405 61 60,6 1270 59,8 10,3 1338 60,9 19,5 1406 61,1 75,4 1271 59,9 10 1339 60,9 22,3 1407 61,4 69,4 1272 60,6 6,2 1340 61,4 35,8 1408 61,6 69,9 1273 60,5 7,3 1341 61,3 42,9 1409 61,7 59,6			· ·						
1269 59,7 22 1337 60,6 29,8 1405 61 60,6 1270 59,8 10,3 1338 60,9 19,5 1406 61,1 75,4 1271 59,9 10 1339 60,9 22,3 1407 61,4 69,4 1272 60,6 6,2 1340 61,4 35,8 1408 61,6 69,9 1273 60,5 7,3 1341 61,3 42,9 1409 61,7 59,6									
1270 59,8 10,3 1338 60,9 19,5 1406 61,1 75,4 1271 59,9 10 1339 60,9 22,3 1407 61,4 69,4 1272 60,6 6,2 1340 61,4 35,8 1408 61,6 69,9 1273 60,5 7,3 1341 61,3 42,9 1409 61,7 59,6									
1271 59,9 10 1339 60,9 22,3 1407 61,4 69,4 1272 60,6 6,2 1340 61,4 35,8 1408 61,6 69,9 1273 60,5 7,3 1341 61,3 42,9 1409 61,7 59,6									
1272 60,6 6,2 1340 61,4 35,8 1408 61,6 69,9 1273 60,5 7,3 1341 61,3 42,9 1409 61,7 59,6									
1273 60,5 7,3 1341 61,3 42,9 1409 61,7 59,6									
1274 60,2 14,8 1342 61,5 31 1410 61,8 54,8	1273	60,5		1341	61,3		1409		
	1274	60,2	14,8	1342	61,5	31	1410	61,8	54,8

Tempo s	Velocità normalizzata %	Coppia normalizzata %	Tempo s	Velocità normalizzata %	Coppia normalizzata %	Tempo s	Velocità normalizzata %	Coppia normalizzata %
1411	61,6	53,6	1479	60,7	26,7	1547	58,8	6,4
1412	61,3	53,5	1480	60,1	4,7	1548	58,7	5
1413	61,3	52,9	1481	59,9	0	1549	57,5	«m»
1414	61,2	54,1	1482	60,4	36,2	1550	57,4	«m»
1415	61,3	53,2	1483	60,7	32,5	1551	57,1	1,1
1416	61,2	52,2	1484	59,9	3,1	1552	57,1	0
1417	61,2	52,3	1485	59,7	«m»	1553	57	4,5
1418	61	48	1486	59,5	«m»	1554	57,1	3,7
1419 1420	60,9 61	41,5 32,2	1487 1488	59,2 58,8	«m» 0,6	1555 1556	57,3 57,3	3,3 16,8
1420	60,7	22	1489	58,8 58,7	«m»	1557	58,2	29,3
1422	60,7	23,3	1490	58,7	«m»	1558	58,7	12,5
1423	60,8	38,8	1491	57,9	«m»	1559	58,3	12,2
1424	61	40,7	1492	58,2	«m»	1560	58,6	12,7
1425	61	30,6	1493	57,6	«m»	1561	59	13,6
1426	61,3	62,6	1494	58,3	9,5	1562	59,8	21,9
1427	61,7	55,9	1495	57,2	6	1563	59,3	20,9
1428	62,3	43,4	1496	57,4	27,3	1564	59,7	19,2
1429	62,3	37,4	1497	58,3	59,9	1565	60,1	15,9
1430	62,3	35,7	1498	58,3	7,3	1566	60,7	16,7
1431	62,8	34,4	1499	58,8	21,7	1567	60,7	18,1
1432	62,8	31,5	1500	58,8	38,9	1568	60,7	40,6
1433	62,9	31,7	1501	59,4	26,2	1569	60,7	59,7
1434	62,9	29,9	1502	59,1	25,5	1570	61,1	66,8
1435	62,8	29,4	1503	59,1 59	26	1571	61,1	58,8
1436 1437	62,7 61,5	28,7 14,7	1504 1505	59,5	39,1 52,3	1572 1573	60,8 60,1	64,7 63,6
1438	61,9	17,2	1506	59,4	31	1574	60,7	83,2
1439	61,5	6,1	1507	59,4	27	1575	60,4	82,2
1440	61	9,9	1508	59,4	29,8	1576	60	80,5
1441	60,9	4,8	1509	59,4	23,1	1577	59,9	78,7
1442	60,6	11,1	1510	58,9	16	1578	60,8	67,9
1443	60,3	6,9	1511	59	31,5	1579	60,4	57,7
1444	60,8	7	1512	58,8	25,9	1580	60,2	60,6
1445	60,2	9,2	1513	58,9	40,2	1581	59,6	72,7
1446	60,5	21,7	1514	58,8	28,4	1582	59,9	73,6
1447	60,2	22,4	1515	58,9	38,9	1583	59,8	74,1
1448	60,7	31,6	1516	59,1	35,3	1584	59,6	84,6
1449	60,9	28,9	1517	58,8	30,3	1585	59,4	76,1
1450 1451	59,6	21,7 18	1518 1519	59 58,7	19 3	1586 1587	60,1 59,5	76,9
1451	60,2 59,5	16,7	1519	58,7 57,9	0	1588	59,5	84,6 77,5
1452	59,8	15,7	1521	58	2,4	1589	60,6	67,9
1454	59,6	15,7	1522	57,1	«m»	1590	59,3	47,3
1455	59,3	15,7	1523	56,7	«m»	1591	59,3	43,1
1456	59	7,5	1524	56,7	5,3	1592	59,4	38,3
1457	58,8	7,1	1525	56,6	2,1	1593	58,7	38,2
1458	58,7	16,5	1526	56,8	«m»	1594	58,8	39,2
1459	59,2	50,7	1527	56,3	«m»	1595	59,1	67,9
1460	59,7	60,2	1528	56,3	«m»	1596	59,7	60,5
1461	60,4	44	1529	56	«m»	1597	59,5	32,9
1462	60,2	35,3	1530	56,7	«m»	1598	59,6	20
1463	60,4	17,1	1531	56,6	3,8	1599	59,6	34,4
1464	59,9	13,5	1532	56,9	«m»	1600	59,4	23,9
1465 1466	59,9 59,6	12,8 14,8	1533 1534	56,9 57.4	«m»	1601 1602	59,6 59,9	15,7 41
1466	59,6 59,4	14,8 15,9	1534	57,4 57,4	«m» «m»	1602	60,5	26,3
1468	59,4	22	1536	58,3	13,9	1604	59,6	14
1469	60,4	38,4	1537	58,5	«m»	1605	59,7	21,2
1470	59,5	38,8	1538	59,1	«m»	1606	60,9	19,6
1471	59,3	31,9	1539	59,4	«m»	1607	60,1	34,3
1472	60,9	40,8	1540	59,6	«m»	1608	59,9	27
1473	60,7	39	1541	59,5	«m»	1609	60,8	25,6
1474	60,9	30,1	1542	59,6	0,5	1610	60,6	26,3
1475	61	29,3	1543	59,3	9,2	1611	60,9	26,1
1476	60,6	28,4	1544	59,4	11,2	1612	61,1	38
1477	60,9	36,3	1545	59,1	26,8	1613	61,2	31,6
1478	60,8	30,5	1546	59	11,7	1614	61,4	30,6


Tempo	Velocità	Coppia	Tempo	Velocità	Coppia	Tempo	Velocità	Coppia
1	normalizzata	normalizzata	•	normalizzata	normalizzata		normalizzata	normalizzata
1615	% 61,7	29,6	1677	% 60,6	6,7	1739	% 60,9	% «m»
1616	61,5	28,8	1678	60,6	12,8	1740	60,8	4,8
1617	61,7	27,8	1679	60,7	11,9	1740	59,9	«m»
1618	62,2	20,3	1680	60,6	12,4	1741	59,8	«m»
1619	61,4	19,6	1681	60,1	12,4	1742	59,8	«m»
1620	61,8	19,7	1682	60,5	12,4	1743	58,8	«m»
1621	61,8	18,7	1683	60,4	11,8	1744	58,8	
1622	61,6	17,7	1684	59,9	12,4	1746	58,2	«m» «m»
1623	61,7	8,7	1685	59,6	12,4	1747	58,5	14,3
1624	61,7	1,4	1686	59,6	9,1	1747	57,5	4,4
1625	61,7	5,9	1687	59,9	0	1749	57,9	0
1626	61,2	8,1	1688	59,9	20,4	1750	57,8	20,9
1627	61,9	45,8	1689	59,8	4,4	1751	58,3	9,2
1628	61,4	31,5	1690	59,4	3,1	1752	57,8	8,2
1629	61,7	22,3	1691	59,5	26,3	1753	57,5	15,3
1630	62,4	21,7	1692	59,6	20,1	1754	58,4	38
1631	62,8	21,9	1693	59,4	35	1755	58,1	15,4
1632	62,2	22,2	1694	60,9	22,1	1756	58,8	11,8
1633	62,5	31	1695	60,5	12,2	1757	58,3	8,1
1634	62,3	31,3	1696	60,1	11	1758	58,3	5,5
1635	62,6	31,7	1697	60,1	8,2	1759	59	4,1
1636	62,3	22,8	1698	60,5	6,7	1760	58,2	4,9
1637	62,7	12,6	1699	60	5,1	1761	57,9	10,1
1638	62,2	15,2	1700	60	5,1	1762	58,5	7,5
1639	61,9	32,6	1701	60	9	1763	57,4	7,5
1640	62,5	23,1	1701	60,1	5,7	1764	58,2	6,7
1641	61,7	19,4	1703	59,9	8,5	1765	58,2	6,6
1642	61,7	10,8	1704	59,4	6	1766	57,3	17,3
1643	61,6	10,2	1705	59,5	5,5	1767	58	11,4
1644	61,4	«m»	1706	59,5	14,2	1768	57,5	47,4
1645	60,8	«m»	1707	59,5	6,2	1769	57,4	28,8
1646	60,7	«m»	1708	59,4	10,3	1770	58,8	24,3
1647	61	12,4	1709	59,6	13,8	1771	57,7	25,5
1648	60,4	5,3	1710	59,5	13,9	1772	58,4	35,5
1649	61	13,1	1711	60,1	18,9	1773	58,4	29,3
1650	60,7	29,6	1712	59,4	13,1	1774	59	33,8
1651	60,5	28,9	1713	59,8	5,4	1775	59	18,7
1652	60,8	27,1	1714	59,9	2,9	1776	58,8	9,8
1653	61,2	27,3	1715	60,1	7,1	1777	58,8	23,9
1654	60,9	20,6	1716	59,6	12	1778	59,1	48,2
1655	61,1	13,9	1717	59,6	4,9	1779	59,4	37,2
1656	60,7	13,4	1718	59,4	22,7	1780	59,6	29,1
1657	61,3	26,1	1719	59,6	22	1781	50	25
1658	60,9	23,7	1720	60,1	17,4	1782	40	20
1659	61,4	32,1	1721	60,2	16,6	1783	30	15
1660	61,7	33,5	1722	59,4	28,6	1784	20	10
1661	61,8	34,1	1723	60,3	22,4	1785	10	5
1662	61,7	17	1724	59,9	20	1786	0	0
1663	61,7	2,5	1725	60,2	18,6	1787	0	0
1664	61,5	5,9	1726	60,3	11,9	1788	0	0
1665	61,3	14,9	1727	60,4	11,6	1789	0	0
1666	61,5	17,2	1728	60,6	10,6	1790	0	0
1667	61,1	«m»	1729	60,8	16	1791	0	0
1668	61,4	«m»	1730	60,9	17	1792	0	0
1669	61,4	8,8	1731	60,9	16,1	1793	0	0
1670	61,3	8,8	1732	60,7	11,4	1794	0	0
1671	61	18	1733	60,9	11,3	1795	0	0
1672	61,5	13	1734	61,1	11,2	1796	0	0
1673	61	3,7	1735	61,1	25,6	1797	0	0
1674	60,9	3,1	1736	61	14,6	1798	0	0
1675	60,9	4,7	1737	61	10,4	1799	0	0
1676	60,6	4,1	1738	60,6	«m»	1800	0	0

«m» = trascinamento.

IT

La figura 5 mostra una rappresentazione grafica della tabella dinamometrica ETC.

Figura 5 **Tabella dinamometrica ETC**

Appendice 4

PROCEDURE DI MISURAZIONE E CAMPIONAMENTO

1. INTRODUZIONE

I componenti gassosi, il particolato, e il fumo emessi dal motore sottoposto alla prova vengono misurati con i metodi definiti nell'allegato V. Questi descrivono i sistemi analitici raccomandati per le emissioni gassose (punto 1), i sistemi raccomandati di diluizione e campionamento del particolato (punto 2), e gli opacimetri raccomandati per la misurazione del fumo (punto 3).

Per il metodo ESC, i componenti gassosi vengono determinati nel gas di scarico grezzo. Facoltativamente possono venire determinati nel gas di scarico diluito se per la determinazione del particolato si usa un sistema di diluizione a flusso totale. Il particolato viene determinato con un sistema di diluizione a flusso parziale o a flusso totale.

Per l'ETC, per la determinazione delle emissioni gassose e di particolato si usa solo un sistema di diluizione a flusso totale, considerato sistema di riferimento. Tuttavia il servizio tecnico può approvare sistemi di diluizione a flusso parziale se ne viene dimostrata l'equivalenza secondo il punto 6.2 dell'allegato I e a condizione che gli venga fornita una descrizione dettagliata delle procedure di calcolo e di valutazione dei dati.

2. BANCO DINAMOMETRICO E APPARECCHIATURE DELLA SALA PROVA

Per le prove di emissione dei motori al banco dinamometrico si usano le seguenti apparecchiature.

2.1. Macchina dinamometrica

Usare una macchina dinamometrica con caratteristiche adeguate per eseguire i cicli di prova descritti nelle appendici 1 e 2 di questo allegato. Il sistema di misurazione della velocità deve avere una precisione del $\pm\,2\%$ del valore indicato. Il sistema di misurazione della coppia deve avere una precisione del $\pm\,3\%$ del valore indicato nel campo $>\,20\%$ del fondo scala e una precisione dello $\pm\,0,6\%$ del fondo scala nel campo $<\,20\%$ del fondo scala.

2.2. Altri strumenti

Usare gli strumenti di misura occorrenti per il consumo del combustibile, il consumo d'aria, la temperatura del refrigerante e del lubrificante, la pressione del gas di scarico e la depressione al collettore di aspirazione, la temperatura del gas di scarico, la temperatura di aspirazione dell'aria, la pressione atmosferica, l'umidità e la temperatura del combustibile. Questi strumenti devono essere conformi ai requisiti presentati in tabella 8:

Tabella 8 Accuratezza degli strumenti di misura

Strumento di misura	Precisione
Consumo di combustible	± 2% del valore massimo del motore
Consumo d'aria	± 2% del valore massimo del motore
Temperature ≤ 600 K (327 °C)	± 2 K assoluti
Temperature > 600 K (327 °C)	± 1 % del valore indicato
Pressione atmosferica	±0,1 kPa assoluti
Pressione del gas di scarico	± 0,2 kPa assoluti
Depressione all'aspirazione	± 0,05 kPa assoluti
Altre pressioni	±0,1 kPa assoluti
Umidità relativa	± 3 % assoluto
Umidità assoluta	± 5 % del valore indicato

IT

Per il calcolo delle emissioni contenute nello scarico grezzo, è necessario conoscere il flusso di gas di scarico (vedi punto 4.4 dell'appendice 1). Per la determinazione del flusso allo scarico si può usare uno dei metodi seguenti:

- a) Misura diretta del flusso di gas di scarico mediante boccaglio di misurazione del flusso o sistema di misurazione equivalente;
- b) Misura del flusso d'aria e del flusso di combustibile mediante adatti metodi di misurazione e calcolo del flusso dello scarico mediante l'equazione seguente:

 $G_{EXHW} = G_{AIRW} + G_{FUEL}$ (per la massa dello scarico umido)

La precisione della determinazione del flusso allo scarico deve essere $\pm 2,5\,\%$ del valore indicato o migliore.

Possono essere utilizzati altri metodi equivalenti.

2.4. Flusso di gas di scarico diluito

Per il calcolo delle emissioni contenute nel gas di scarico diluito con l'uso del sistema di diluizione a flusso totale (obbligatorio per ETC), è necessario conoscere la portata del gas di scarico diluito (vedi punto 4.3 dell'appendice 2). Misurare la portata massica totale del gas di scarico diluito (G_{TOTW}) o la massa totale del gas di scarico diluito su tutto il ciclo (M_{TOTW}) con una PDP o un CFV (allegato V, punto 2.3.1). La precisione deve essere di $\pm 2\%$ del valore indicato o migliore, e si determina come prescritto nell'allegato III, appendice 5, punto 2.4.

3. DETERMINAZIONE DEI COMPONENTI GASSOSI

3.1. Specifiche generali degli analizzatori

Gli analizzatori devono avere un intervallo di misurazione appropriato alla precisione richiesta per misurare le concentrazioni dei componenti del gas di scarico (punto 3.1.1). Si raccomanda di utilizzare gli analizzatori in modo tale che la concentrazione misurata sia compresa tra il 15% e il 100% del fondo scala.

Se sistemi di estrazione dati (computer, registratori di dati) sono in grado di fornire una sufficiente precisione e risoluzione al di sotto del 15% del fondo scala, sono accettabili anche misure al di sotto del 15% del fondo scala. In tal caso, si devono eseguire tarature addizionali su almeno quattro punti diversi dallo zero nominalmente equidistanti per garantire la precisione delle curve di taratura secondo l'allegato III, appendice 5, punto 1.5.5.2.

La compatibilità elettromagnetica (CEM) dell'apparecchiatura deve essere tale da minimizzare errori addizionali.

3.1.1. Errore di misura

L'errore totale di misura, inclusa la sensibilità incrociata con altri gas (vedi allegato III, appendice 5, punto 1.9), non deve superare il valore minore tra il $\pm 5\%$ del valore letto e il $\pm 3,5\%$ del fondo scala. Per concentrazioni minori di 100 ppm, l'errore di misura non deve essere superiore a ± 4 ppm.

3.1.2. Ripetibilità

La ripetibilità, definita come 2,5 volte la deviazione standard di dieci risposte ripetitive ad un dato gas di taratura o calibrazione, non deve essere maggiore del $\pm 1\%$ della concentrazione di fondo scala per ciascun intervallo utilizzato al di sopra di 155 ppm (o ppm di C) o del 2% di ciascun intervallo utilizzato al di sotto di 155 ppm (o ppm di C).

3.1.3. Rumore

La risposta dell'analizzatore da picco a picco ai gas di azzeramento e di taratura o calibrazione su qualsiasi periodo di 10 secondi non deve superare il 2% del fondo scala su tutti gli intervalli utilizzati.

3.1.4. Deriva dello zero

La deriva dello zero per un periodo di un'ora deve essere inferiore al 2% del fondo scala sull'intervallo più basso utilizzato. La risposta di zero è definita come la risposta media, incluso il rumore, ad un gas di azzeramento su un intervallo di tempo di 30 secondi.

3.1.5. Deriva del valore di calibrazione

La deriva del valore di calibrazione per un periodo di un'ora deve essere inferiore al 2% del fondo scala sull'intervallo più basso utilizzato. Il valore di calibrazione è definito come la differenza tra la risposta al gas di calibrazione e la risposta di zero. La risposta al gas di calibrazione è definita come la risposta media, incluso il rumore, ad un gas di calibrazione per un intervallo di tempo di 30 secondi.

3.2. Essiccazione del gas

Il dispositivo facoltativo di essiccazione del gas deve avere effetti trascurabili sulla concentrazione dei gas misurati. Non sono ammessi gli essiccatori chimici per rimuovere l'acqua dal campione.

3.3. Analizzatori

I punti da 3.3.1. a 3.3.4 della presente appendice descrivono i principi di misura da applicare. Una descrizione dettagliata dei sistemi di misurazione figura nell'allegato V. I gas da misurare devono essere analizzati con gli strumenti seguenti. Per analizzatori non lineari, è ammesso l'uso di circuiti di linearizzazione.

3.3.1. Analisi del monossido di carbonio (CO)

L'analizzatore del monossido di carbonio deve essere del tipo ad assorbimento non dispersivo nell'infrarosso (NDIR).

3.3.2. Analisi del biossido di carbonio (CO₂)

L'analizzatore del biossido di carbonio deve essere del tipo ad assorbimento non dispersivo nell'infrarosso (NDIR).

3.3.3. Analisi degli idrocarburi (HC)

Per i motori diesel l'analizzatore degli idrocarburi deve essere del tipo con rivelatore a ionizzazione di fiamma riscaldato (HFID) in cui il rivelatore, le valvole, le tubature, ecc. sono riscaldati in modo da mantenere il gas ad una temperatura di 463K ±10K (190 ±10°C). Per i motori a GN e GPL, l'analizzatore degli idrocarburi può essere del tipo con rivelatore a ionizzazione di fiamma (FID) non riscaldato, secondo il metodo usato (vedi allegato V, punto 1.3).

3.3.4. Analisi degli idrocarburi diversi dal metano (NMHC) (solo per motori a GN)

Determinare gli idrocarburi diversi dal metano mediante uno dei metodi seguenti:

3.3.4.1. Metodo gascromatografico (GC)

Gli idrocarburi diversi dal metano vengono determinati per sottrazione del metano analizzato con un gascromatografo (GC) condizionato a 423 K (150 °C) dagli idrocarburi misurati secondo il punto 3.3.3.

3.3.4.2. Metodo del separatore della frazione diversa dal metano (NMC)

La determinazione della frazione non costituita da metano viene eseguita con un NMC riscaldato disposto in linea con un FID secondo il punto 3.3.3 mediante sottrazione del metano dagli idrocarburi.

3.3.5. Analisi degli ossidi d'azoto (NO_x)

L'analizzatore degli ossidi di azoto deve essere del tipo con rivelatore a chemiluminescenza (CLD) o con rivelatore a chemiluminescenza riscaldato (HCLD) con un convertitore NO₂/NO se la misura viene effettuata sul secco. Se la misura viene effettuata su umido, si deve usare un HCLD con convertitore mantenuto al di sopra di 328 K (55°C), a condizione che il controllo dell'estinzione causata dall'acqua rientri nella norma (allegato III, appendice 5, punto 1.9.2.2).

3.4. Campionamento delle emissioni gassose

3.4.1. Gas di scarico grezzo (solo ESC)

Le sonde di campionamento delle emissioni gassose devono essere disposte ad una distanza non inferiore al valore più elevato tra 0,5 m e il triplo del diametro del condotto di scarico a monte dell'uscita del sistema dei gas di scarico, se applicabile, e sufficientemente vicino al motore da assicurare una temperatura del gas di scarico di almeno 343 K (70 °C) in corrispondenza della sonda.

ΙT

Se il motore è dotato di un dispositivo di post-trattamento degli scarichi, il campione di gas di scarico deve essere prelevato a valle del sistema di post-trattamento dello scarico.

3.4.2. Gas di scarico diluito (obbligatorio per ETC, facoltativo per ESC)

Il condotto di scarico tra il motore e il sistema di diluizione a flusso totale deve essere conforme ai requisiti dell'allegato V, punto 2.3.1, EP.

La/e sonda/e per il campionamento delle emissioni gassose devono essere installate nella galleria di diluizione in un punto in cui l'aria di diluizione e il gas di scarico sono ben miscelati, e in stretta vicinanza della sonda di campionamento del particolato.

Per l'ETC, il campionamento può in generale venire effettuato in due modi:

- gli inquinanti vengono campionati in un sacchetto di campionamento su tutto il ciclo e misurati dopo il completamento della prova;
- gli inquinanti vengono campionati in continuo e integrati durante tutto il ciclo; questo metodo è obbligatorio per HC e NO_x.

4. DETERMINAZIONE DEL PARTICOLATO

La determinazione del particolato richiede un sistema di diluizione. Per la diluizione si può utilizzare un sistema di diluizione a flusso parziale (solo ESC) o un sistema di diluizione a flusso totale (obbligatorio per ETC). La portata del sistema di diluizione deve essere sufficiente per eliminare completamente la condensazione d'acqua nei sistemi di diluizione e campionamento e per mantenere la temperatura del gas di scarico diluito su un valore non superiore a 325K (52 °C) immediatamente a monte dei portafiltri. È ammessa la deumidificazione dell'aria di diluizione prima dell'ingresso nel sistema di diluizione, ed è particolarmente utile se l'umidità dell'aria di diluizione è elevata. La temperatura dell'aria di diluizione deve essere di 298 K \pm 5 K (25 °C \pm 5 °C). Se la temperatura ambiente è inferiore a 293K (20 °C), si raccomanda di preriscaldare l'aria di diluizione al di sopra del limite superiore di temperatura di 303K (30 °C). Tuttavia, la temperatura dell'aria di diluizione non deve superare i 325 K (52 °C) prima dell'introduzione degli scarichi nella galleria di diluizione.

Il sistema di diluizione a flusso parziale deve essere progettato in modo da suddividere la corrente di gas di scarico in due frazioni, la più piccola delle quali viene diluita con aria e successivamente utilizzata per la misura del particolato. Ne consegue che il rapporto di diluizione deve essere determinato con estrema precisione. Si possono applicare vari metodi di divisione e il tipo di divisione usato determina in misura significativa i materiali e le procedure di campionamento da impiegare (allegato V, punto 2.2). La sonda di campionamento del particolato va installata in stretta vicinanza della sonda di campionamento delle emissioni gassose e conformemente al disposto del punto 3.4.1.

Per determinare la massa del particolato occorrono un sistema di campionamento del particolato, filtri di campionamento del particolato, una bilancia precisa al microgrammo, e una camera di pesata a temperatura e umidità controllate.

Per il campionamento del particolato, si applica il metodo a filtro unico che utilizza una coppia di filtri (vedi punto 4.1.3) per l'intero ciclo di prova. Per l'ESC dedicare una considerevole attenzione ai tempi e ai flussi durante la fase di campionamento della prova.

4.1. Filtri di campionamento del particolato

4.1.1. Specifiche dei filtri

Usare filtri di fibra di vetro ricoperta di fluorocarburi o filtri a membrana a base di fluorocarburi. I filtri di tutti i tipi devono avere un'efficienza di raccolta del DOP (di-ottilftalato) da $0.3~\mu m$ almeno del 95% ad una velocità del gas ortogonale alla superficie del filtro compresa tra 35~e 80 cm/s.

4.1.2. Dimensioni dei filtri

I filtri del particolato devono avere un diametro minimo di 47 mm (37 mm di diametro della macchia). Sono accettabili anche filtri di diametro maggiore (punto 4.1.5).

4.1.3. Filtro principale e filtro di sicurezza

Il gas di scarico diluito deve essere raccolto mediante una coppia di filtri disposti in serie (un filtro principale e un filtro di sicurezza) durante la sequenza di prova. Il filtro di sicurezza deve essere disposto non più di 100 mm a valle del filtro principale e non deve essere in contatto con esso. I filtri possono essere pesati separatamente o in coppia, con i filtri disposti lato macchiato contro lato macchiato.

4.1.4. Velocità ortogonale alla superficie del filtro

Si deve ottenere una velocità ortogonale alla superficie del filtro del gas attraverso il filtro stesso da 35 a 80 cm/s. Fra l'inizio e la fine della prova la caduta di pressione non deve registrare un aumento superiore a 25 kPa.

4.1.5. Carico depositato sui filtri

Il carico minimo raccomandato depositato sui filtri deve essere di 0,5 mg/1 075 mm² di area della macchia. Per i filtri delle dimensioni più comuni, i valori sono mostrati in Tabella 9.

Tabella 9
Carichi sul filtro raccomandati

Diametro del filtro	Diametro raccomandato della macchia	Carico minimo raccomandato
(mm)	(mm)	(mg)
47	37	0,5
70	60	1,3
90	80	2,3
110	100	3,6

4.2. Specifiche della camera di pesata e della bilancia analitica

4.2.1. Condizioni della camera di pesata

La temperatura della camera (o locale) in cui vengono condizionati e pesati i filtri del particolato deve essere mantenuta entro $295K \pm 3 \text{ K} (22 \,^{\circ}\text{C} \pm 3 \,^{\circ}\text{C})$ durante tutto il condizionamento e la pesata dei filtri. L'umidità deve essere mantenuta su un punto di rugiada di $282,5K \pm 3 \text{ K} (9,5 \,^{\circ}\text{C} \pm 3 \,^{\circ}\text{C})$ e un'umidità relativa del $45\% \pm 8\%$.

4.2.2. Pesata del filtro di riferimento

L'ambiente della camera (o locale) deve essere esente da qualsiasi contaminante ambientale (come la polvere) che possa depositarsi sui filtri del particolato durante la loro stabilizzazione. Sono ammessi disturbi delle specifiche relative alla camera di pesata indicata al punto 4.2.1 se la durata del disturbo non supera i 30 minuti. La camera di pesata deve essere conforme alle specifiche richieste prima che il personale entri nella camera di pesata. Entro 4 ore dalla pesata del filtro/coppia di filtri campione, ma preferibilmente allo stesso momento, devono essere pesati almeno due filtri di riferimento o due coppie di filtri di riferimento non utilizzati. Questi devono essere delle stesse dimensioni e dello stesso materiale dei filtri campione.

Se il peso medio dei filtri di riferimento o della coppia di filtri di riferimento varia di oltre il $\pm 5\%$ ($\pm 7.5\%$ per la coppia di filtri) rispetto al carico minimo raccomandato sul filtro (punto 4.1.5.), tra le pesate del filtro campione, tutti i filtri campione devono essere scartati e le prove di emissione ripetute.

Se non sono soddisfatti i criteri di stabilità della camera di pesata indicati al punto 4.2.1., ma la pesata del filtro o della coppia di filtri di riferimento è conforme ai criteri sopraindicati, il costruttore del motore può accettare i pesi dei filtri campione o annullare le prove, riparare il sistema di controllo della camera di pesata e rieseguire la prova.

IT

La bilancia analitica utilizzata per determinare i pesi di tutti i filtri deve avere una precisione (deviazione standard) di $20\mu g$ e una risoluzione di $10\mu g$ (1 divisione della scala = $10\mu g$). Per filtri di diametro inferiore ai 70 mm, la precisione e la risoluzione devono essere rispettivamente di $2\mu g$ e $1\mu g$.

4.3. Specifiche supplementari per la misura del particolato

Tutte le parti del sistema di diluizione e del sistema di campionamento comprese tra il condotto di scarico e il supporto dei filtri, che vengono a contatto con gas di scarico grezzi e diluiti, devono essere progettate in modo da minimizzare la deposizione o l'alterazione del particolato. Le parti devono essere fabbricate con materiali elettroconduttori che non reagiscano con i componenti dei gas di scarico e devono essere a massa per impedire effetti elettrostatici.

5. DETERMINAZIONE DEL FUMO

Questo capitolo fornisce le specifiche per le apparecchiature prescritte e facoltative da usarsi per la prova ELR. Il fumo viene misurato con un opacimetro avente una scala di lettura della opacità e una scala di lettura del coefficiente di assorbimento della luce. La modalità di indicazione di opacità viene usata solo per la taratura e il controllo dell'opacimetro. Gli indici di fumo del ciclo di prova vengono misurati nella modalità di indicazione coefficiente di assorbimento della luce.

5.1. **Prescrizioni generali**

L'ELR richiede l'uso di un sistema di misurazione del fumo e di elaborazione dati includente tre unità funzionali, che possono essere integrate in un unico componente o costituire un sistema di componenti collegati fra loro. Le tre unità funzionali sono:

- Un opacimetro conforme alle specifiche dell'allegato V, punto 3.
- Un'unità di elaborazione dati in grado di eseguire le funzioni descritte nell'allegato III, appendice 1, punto 6.
- Una stampante e/o un supporto di memorizzazione elettronica per registrare e fornire gli indici di fumo specificati nell'allegato III, appendice 1, punto 6.3.

5.2. Prescrizioni specifiche

5.2.1. Linearità

La linearità deve essere compresa entro il ± 2% dell'opacità.

5.2.2. Deriva dello zero

La deriva dello zero su un periodo di un un'ora non deve superare il ± 1 % dell'opacità.

5.2.3. Quadrante dell'opacimetro e intervallo

Per l'indicazione in opacità, la scala deve essere dello 0-100% di opacità e la risoluzione dello 0.1% di opacità. Per l'indicazione in coefficiente di assorbimento della luce, la scala deve essere di $0-30~\text{m}^{-1}$ di coefficiente di assorbimento della luce, e la risoluzione di $0.01~\text{m}^{-1}$ di coefficiente di assorbimento della luce.

5.2.4. Tempo di risposta dello strumento

Il tempo di risposta fisica dell'opacimetro non deve superare 0,2 secondi. Il tempo di risposta fisica è il tempo che trascorre tra gli istanti in cui l'uscita di un ricevitore a risposta rapida raggiunge il 10 e il 90% della deviazione piena quando l'opacità del gas misurato viene modificata in meno di 0,1 s.

Il tempo di risposta elettrica dell'opacimetro non deve superare 0,05 s. Il tempo di risposta elettrica è il tempo che trascorre tra gli istanti in cui l'uscita dell'opacimetro raggiunge il 10 e il 90% del fondo scala quando la sorgente di luce viene interrotta o spenta completamente in meno di 0,01 s.

5.2.5. Filtri di densità neutri

L'indice di eventuali filtri di densità neutri usati in combinazione con la taratura dell'opacimetro, le misure di linearità o la regolazione della calibrazione deve essere noto con una precisione dello 1,0% di opacità. La precisione del valore nominale del filtro deve essere controllata almeno annualmente utilizzando un sistema di riferimento riconducibile ad una norma nazionale o internazionale.

I filtri di densità neutri sono dispositivi di precisione e possono facilmente venire danneggiati durante l'uso. La manipolazione deve essere minima e, quando necessaria, eseguita con cura per evitare di graffiare o sporcare il filtro.

Appendice 5

PROCEDIMENTO DI TARATURA

1. TARATURA DEGLI STRUMENTI ANALITICI

1.1. **Introduzione**

Ciascun analizzatore deve essere tarato con la frequenza necessaria per soddisfare i requisiti di precisione della presente direttiva. In questo punto è descritto il metodo di taratura da utilizzare per gli analizzatori indicati nell'allegato III, appendice 4, punto 3 e nell'allegato V, punto 1.

1.2. Gas di taratura

Rispettare la durata di conservazione di tutti i gas di taratura.

Registrare la data di scadenza dei gas di taratura dichiarata dal produttore.

1.2.1. Gas puri

La purezza dei gas richiesta è definita dai limiti di contaminazione sottoindicati. Devono essere disponibili i seguenti gas:

Azoto purificato

```
(Contaminazione \leq 1 ppm C1, \leq 1 ppm CO, \leq 400 ppm CO<sub>2</sub>, \leq 0.1 ppm NO)
```

Ossigeno purificato

```
(Purezza > 99,5 vol % O_2)
```

Miscela idrogeno-elio

```
(40 ± 2% idrogeno, rimanente elio)
```

(Contaminazione ≤ 1 ppm C1, ≤ 400 ppm CO₂)

Aria sintetica purificata

(Contaminazione ≤ 1 ppm C1, ≤ 1 ppm CO, ≤ 400 ppm CO₂, ≤ 0,1 ppm NO)

(Contenuto di ossigeno 18-21% vol)

Propano purificato o CO per la verifica del CVS

1.2.2. Gas di taratura e di calibrazione

Devono essere disponibili miscele di gas aventi le seguenti composizioni chimiche:

C₃H₈ e aria sintetica purificata (vedi punto 1.2.1)

CO e azoto purificato

 NO_x e azoto purificato (la quantità di NO_2 contenuta in questo gas di taratura non deve essere superiore al 5% del contenuto di NO);

CO₂ e azoto purificato

CH₄ e aria sintetica purificata

C2H6 e aria sintetica purificata

Nota: Sono ammesse combinazioni di altri gas, purché i gas non reagiscano uno con l'altro.

La concentrazione effettiva dei gas di taratura e di calibrazione deve essere compresa entro il $\pm 2\%$ del valore nominale. Tutte le concentrazioni dei gas di taratura devono essere indicate su base volume (% in volume o ppm in volume).

I gas utilizzati per la taratura e per la calibrazione (controllo e regolazione giornalieri) possono essere ottenuti anche mediante un divisore di gas effettuando la diluizione con N_2 purificato o con aria sintetica purificata. La precisione del dispositivo di miscelazione deve essere tale che la concentrazione dei gas di taratura diluiti possa venire determinata con un errore non superiore al $\pm 2\%$.

1.3. Procedura operativa per gli analizzatori e per il sistema di campionamento

La procedura operativa per gli analizzatori deve seguire le istruzioni di avviamento e esecuzione dell'analisi del costruttore dello strumento. Devono essere rispettati i requisiti minimi presentati nei punti da 1.4 a 1.9.

1.4. Prova di tenuta

Eseguire una prova di trafilamento del sistema. La sonda deve essere disinserita dal sistema di scarico e l'estremità chiusa. Mettere in funzione la pompa dell'analizzatore. Dopo un periodo iniziale di stabilizzazione, tutti i flussimetri devono indicare zero; in caso contrario, controllare le linee di campionamento e rimediare ai difetti.

Il trafilamento massimo ammissibile sul lato in depressione è lo 0,5 % della portata di utilizzo per la porzione di sistema controllata. Si possono usare le portate attraverso l'analizzatore e attraverso il bypass per stimare le portate di utilizzo.

Un altro metodo è l'introduzione di un cambiamento di concentrazione a gradino all'inizio della linea di campionamento passando dal gas di azzeramento a quello di calibrazione. Se, dopo un adeguato periodo di tempo, il valore letto indica una concentrazione inferiore a quella introdotta, esistono problemi di taratura o di trafilamento.

1.5. **Procedimento di taratura**

1.5.1. Strumentazione

Gli strumenti montati devono essere tarati e le curve di taratura devono essere controllate rispetto a gas campione, impiegando le portate di gas utilizzate per il campionamento degli scarichi.

1.5.2. Tempo di riscaldamento

Seguire i tempi di riscaldamento raccomandati dal costruttore. Se non è specificato, si raccomanda un tempo di riscaldamento degli analizzatori di almeno due ore.

1.5.3. Analizzatori NDIR e HFID

Regolare opportunamente l'analizzatore NDIR e ottimizzare la fiamma di combustione dell'analizzatore HFID (punto 1.8.1).

1.5.4. Taratura

Tarare ciascun intervallo operativo normalmente usato.

Azzerare gli analizzatori di CO, CO2, NOx e HC con aria sintetica (o azoto) purificati.

Introdurre negli analizzatori gli appropriati gas di taratura, registrare i valori e tracciare le curve di taratura conformemente al punto 1.5.5.

Se necessario, ricontrollare la regolazione dello zero e ripetere la procedura di taratura.

1.5.5. Determinazione della curva di taratura

1.5.5.1. Orientamento generale

La curva di taratura dell'analizzatore viene determinata mediante almeno cinque punti di taratura oltre lo zero distribuiti nel modo più uniforme possibile. La concentrazione nominale massima deve essere uguale o superiore al 90% del fondo scala.

La curva di taratura viene calcolata mediante il metodo dei minimi quadrati. Se il grado della polinomiale risultante è maggiore di 3, il numero dei punti di taratura (incluso lo zero) non deve essere inferiore al grado di questa polinomiale aumentato di 2.

La curva di taratura non deve differire di oltre il $\pm 2\%$ dal valore nominale di ciascun punto di taratura e di oltre il $\pm 1\%$ del fondo scala a zero.

Dalla curva di taratura e dai punti di taratura è possibile verificare se la taratura è stata eseguita correttamente. Devono essere indicati i differenti parametri caratteristici dell'analizzatore e in particolare:

- l'intervallo di misurazione
- la sensibilità
- la data di esecuzione della taratura.

La curva di taratura dell'analizzatore viene determinata mediante almeno 4 punti di taratura addizionali, escluso lo zero, nominalmente equidistanti al di sotto del 15% del fondo scala.

La curva di taratura viene calcolata con il metodo dei minimi quadrati.

La curva di taratura non deve differire di oltre il $\pm 4\%$ dal valore nominale di ciascun punto di taratura né di oltre il $\pm 1\%$ del fondo scala a zero.

Queste disposizioni non si applicano in presenza di un valore del fondo scala minore o uguale a 155 ppm.

1.5.5.3. Metodi alternativi

ΙΤ

Se è possibile dimostrare che una tecnica alternativa (per esempio elaboratore, commutatore di intervallo a comando elettronico, ecc.) può fornire una precisione equivalente, si possono utilizzare tali tecniche.

1.6. Verifica della taratura

Ciascun intervallo operativo normalmente utilizzato deve essere controllato prima di ogni analisi secondo la procedura seguente.

La taratura viene controllata utilizzando un gas di azzeramento e un gas di calibrazione il cui valore nominale sia superiore all'80% del fondo scala dell'intervallo di misurazione.

Se, per i due punti considerati, il valore trovato non differisce di oltre il ± 4% del fondo scala dal valore di riferimento dichiarato, si possono modificare i parametri di aggiustamento. In caso contrario, determinare una nuova curva di taratura secondo il punto 1.5.5.

1.7. Prova di efficienza del convertitore NO_x

L'efficienza del convertitore utilizzato per la conversione di NO_2 in NO viene controllata come indicato nei punti 1.7.1 - 1.7.8 (figura 6).

1.7.1. Impianto di prova

L'efficienza dei convertitori può essere controllata con un ozonizzatore in base all'impianto di prova presentato in figura 6 (vedi inoltre allegato III, appendice 4, punto 3.3.5) e al procedimento descritto qui di seguito

1.7.2. Taratura

CLD e HCLD devono essere tarati nell'intervallo di funzionamento più comune, secondo le specifiche del costruttore, utilizzando un gas di azzeramento e un gas di calibrazione (il cui contenuto di NO deve essere circa l'80 % dell'intervallo operativo con una concentrazione di $\rm NO_2$ della miscela di gas inferiore al 5 % della concentrazione di NO). L'analizzatore di $\rm NO_x$ deve essere regolato nella posizione NO, in modo che il gas di calibrazione non passi attraverso il convertitore. Registrare la concentrazione indicata.

1.7.3. Calcolo

L'efficienza del convertitore di NO_{x} viene calcolata come segue:

Efficenza (%) =
$$\left(1 + \frac{a-b}{c-d}\right) * 100$$

dove:

a è la concentrazione di NO_x conformemente al punto 1.7.6

b è la concentrazione di NO_x conformemente al punto 1.7.7

c è la concentrazione di NO conformemente al punto 1.7.4

d è la concentrazione di NO conformemente al punto 1.7.5

1.7.4. Aggiunta di ossigeno

Attraverso un raccordo a T, aggiungere di continuo ossigeno o aria di azzeramento al flusso di gas fino a quando la concentrazione indicata risulti inferiore di circa il 20% alla concentrazione di taratura indicata al punto 1.7.2 (*Analizzatore in posizione NO*). Registrare la concentrazione indicata c. Mantenere disattivato l'ozonizzatore durante tutto il processo.

1.7.5. Attivazione dell'ozonizzatore

Attivare quindi l'ozonizzatore per generare una quantità di ozono sufficiente a ridurre la concentrazione di NO a circa il 20% (minimo 10%) della concentrazione di taratura di cui al punto 1.7.2. Registrare la concentrazione indicata d. (*Analizzatore in posizione NO*).

1.7.6. Posizione NO_x

Commutare quindi l'analizzatore sulla posizione NO_x in modo che la miscela gassosa (costituita da NO, NO_2 , O_2 e N_2) passi attraverso il convertitore. Registrare la concentrazione indicata a. (Analizzatore in posizione NO_x).

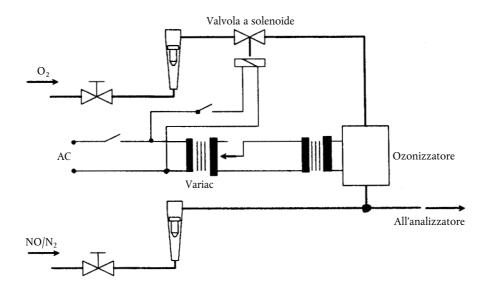
1.7.7. Disattivazione dell'ozonizzatore

Disattivare quindi l'ozonizzatore. La miscela di gas descritta al punto 1.7.6 entra nel rivelatore passando attraverso il convertitore. Registrare la concentrazione indicata b. (*Analizzatore in posizione NO_x*).

1.7.8. Posizione NO

Dopo commutazione sulla posizione NO con l'ozonizzatore disattivato, chiudere anche il flusso di ossigeno o aria sintetica. Il valore di NO_x letto sull'analizzatore non deve deviare di oltre il $\pm 5\%$ dal valore misurato conformemente al punto 1.7.2. (*Analizzatore in posizione NO*).

1.7.9. Intervallo di prova


Verificare l'efficienza del convertitore prima di ciascuna taratura dell'analizzatore di NO_x.

1.7.10. Efficienza

L'efficienza del convertitore non deve essere inferiore al 90 %, ma è vivamente raccomandata un'efficienza maggiore del $95\,\%$

Nota: Se, con l'analizzatore nell'intervallo più comune, l'ozonizzatore non può fornire una riduzione dall'80% al 20% conformemente al punto 1.7.5, utilizzare l'intervallo massimo che consente tale riduzione.

 ${\it Figura~6}$ Schema del dispositivo di determinazione dell'efficienza del convertitore di NO $_{\rm x}$

1.8. Regolazione del FID

1.8.1. Ottimizzazione della risposta del rivelatore

Il rivelatore FID deve essere messo a punto come specificato dal costruttore dello strumento. Come gas di calibrazione, utilizzare propano in aria per ottimizzare la risposta sull'intervallo operativo più comune.

Con le portate di combustibile e di aria raccomandate dal costruttore, introdurre nell'analizzatore un gas di calibrazione contenente 350 ± 75 ppm C. Determinare la risposta ad una data portata di combustibile in base alla differenza tra la risposta al gas di calibrazione e la risposta al gas di azzeramento. Il flusso del combustibile deve essere regolato per incrementi al di sopra e al di sotto del valore specificato dal costruttore. Registrare le risposte di calibrazione e azzeramento a questi flussi di combustibile. Riportare in grafico la differenza tra la risposta di calibrazione e la risposta di azzeramento e regolare il flusso di combustibile sul lato ricco della curva.

1.8.2. Fattori di risposta degli idrocarburi

Tarare l'analizzatore utilizzando propano in aria e aria sintetica purificata conformemente al punto 1.5.

Quando un analizzatore viene messo in servizio e dopo interruzioni di funzionamento piuttosto lunghe, determinare i fattori di risposta. Il fattore di risposta (R_{fj}) per una particolare specie idrocarburica è il rapporto tra il valore C1 letto sul FID e la concentrazione del gas nella bombola espressa in ppm di C1.

La concentrazione del gas di prova deve essere ad un livello tale da ottenere una risposta approssimativamente dell'80% del fondo scala. La concentrazione deve essere nota con una precisione del $\pm 2\%$ riferita ad uno standard gravimetrico espressa in volume. Inoltre, la bombola del gas deve essere precondizionata per 24 ore ad una temperatura di 298 K ± 5 K (25 C ± 5 C).

I gas di prova e gli intervalli raccomandati per i fattori di risposta relativi sono i seguenti:

Metano e aria sintetica purificata: $1,00 \le R_f \le 1,15$

Propilene e aria sintetica purificata: $0.90 \le R_f \le 1.10$

Toluene e aria sintetica purificata: $0.90 \le R_f \le 1.10$

Questi valori sono relativi al fattore di risposta (R_f) di 1,00 per propano e aria sintetica purificata.

1.8.3. Controllo dell'interferenza dell'ossigeno

Quando si mette in servizio un analizzatore e dopo interruzioni di funzionamento piuttosto lunghe, controllare l'interferenza dell'ossigeno.

Il fattore di risposta è definito e deve essere determinato come descritto nel punto 1.8.2. Il gas di prova e l'intervallo raccomandato del fattore di risposta relativo sono i seguenti:

Propano e azoto
$$0.95 \le R_f \le 1.05$$

Questo valore è relativo al fattore di risposta (R_f) di 1,00 per propano e aria sintetica purificata.

La concentrazione dell'ossigeno nell'aria del bruciatore FID deve essere uguale, entro un errore non superiore a ± 1 mole%, alla concentrazione dell'ossigeno nell'aria del bruciatore utilizzata nell'ultimo controllo dell'interferenza dell'ossigeno. Se la differenza è maggiore, controllare l'interferenza dell'ossigeno e regolare se necessario l'analizzatore.

1.8.4. Efficienza del dispositivo di eliminazione («cutter») degli idrocarburi diversi dal metano (NMC, solo per motori a GN)

L'NMC viene usato per la rimozione degli idrocarburi diversi dal metano dal gas campione mediante ossidazione di tutti gli idrocarburi escluso il metano. L'ideale sarebbe che la conversione del metano fosse dell' 0% e quella degli altri idrocarburi rappresentati dall'etano del 100%. Per una misura accurata degli NMHC, si devono determinare le due efficienze e usarle per il calcolo della portata massima dell'emissione o NMHC (vedi allegato II appendice 2.4.3)

1.8.4.1. Efficienza riferita al metano

Far fluire il gas di taratura del metano attraverso il FID-con e senza bypass dell'NMC-e registrare le due concentrazioni. L'efficienza si determina come segue:

$$CE_{M} = 1 - \frac{conc_{w}}{conc_{w/o}}$$

dove:

conc_w = concentrazione di HC quando il CH₄ attraversa lo NMC

conc_{w/o} = concentrazione di HC quando il CH₄ bypassa lo NMC.

1.8.4.2. Efficienza riferita all'etano

Far fluire il gas di taratura dell'etano attraverso il FID con e senza bypass dell'NMC e registrare le due concentrazioni. L'efficienza si determina come segue:

$$CE_E = 1 - \frac{conc_w}{conc_{w/o}}$$

dove:

conc_w = concentrazione di HC quando il C₂H₆ attraverso lo NMC

conc_{w/o} = concentrazione di HC quando il C₂H₆ bypassa lo NMC.

1.9. Effetti di interferenza con gli analizzatori di CO, CO₂ e NO_x

Gas diversi da quello analizzato presenti nello scarico possono interferire in vari modi col valore letto. Si verifica un'interferenza positiva in strumenti NDIR quando il gas interferente fornisce, in minor misura, lo stesso effetto del gas misurato. Si verifica una interferenza negativa, negli strumenti NDIR, a causa di gas interferenti che ampliano la banda di assorbimento del gas misurato e, negli strumenti CLD, a causa di gas interferenti che estinguono la radiazione. Eseguire i controlli di interferenza descritti nei punti 1.9.1 e 1.9.2 prima dell'utilizzo dell'analizzatore e dopo periodi di inutilizzo importanti.

1.9.1. Controllo dell'interferenza sull'analizzatore di CO

Acqua e CO_2 possono interferire con le prestazioni dell'analizzatore di CO . Pertanto, gorgogliare attraverso acqua a temperatura ambiente un gas di calibrazione della CO_2 avente una concentrazione dell'80 al 100% del fondo scala dell'intervallo operativo massimo durante la prova e registrare la risposta dell'analizzatore. La risposta dell'analizzatore non deve essere superiore all'1% del fondo scala per intervalli uguali o superiori a 300 ppm, e non deve essere superiore a 3 ppm per intervalli al di sotto delle 300 ppm.

1.9.2. Controlli dell'attenuazione sull'analizzatore di NO_x

I due gas che possono dare problemi sugli analizzatori CLD (e HCLD), sono ${\rm CO_2}$ e vapore acqueo. Le risposte di estinzione di questi gas sono proporzionali alle loro concentrazioni e richiedono pertanto tecniche d'analisi per determinare l'estinzione alle più elevate concentrazioni prevedibili durante la prova.

1.9.2.1. Controllo dell'attenuazione da CO₂

Far passare attraverso l'analizzatore NDIR un gas di calibrazione della $\rm CO_2$ avente una concentrazione dall' 80 al 100% del fondo scala dell'intervallo operativo massimo e registrare come A il valore della $\rm CO_2$ Diluire poi approssimativamente al 50% con gas di calibrazione di NO e farlo passare attraverso gli analizzatori NDIR e (H)CLD, registrando come B e C rispettivamente i valori di $\rm CO_2$ e NO. Chiudere poi la $\rm CO_2$ e far passare solo i gas di calibrazione di NO attraverso l'analizzatore (H)CLD e registrare come D il valore di NO.

L'attenuazione viene calcolata come segue:

% attenuazione di
$$CO_2 = \left\lceil 1 - \left(\frac{(C*A)}{(D*A) - (D*B)} \right) \right\rceil * 100$$

e non deve essere maggiore del 3% del fondo scala

dove,

A è la concentrazione di CO2 non diluita misurata con NDIR in %

B è la concentrazione di CO2 diluita misurata con NDIR in %

C è la concentrazione di NO diluita misurata con (H)CLD in ppm

D è la concentrazione di NO non diluita misurata con (H)CLD in ppm

Si possono usare metodi alternativi di diluizione e quantificazione dei valori dei gas di calibrazione di CO_2 e NO, come la miscelazione dinamica.

1.9.2.2. Controllo dell'attenuazione causata dall'acqua

Il controllo si applica solo alle misure della concentrazione dei gas umidi. Il calcolo dell'attenuazione provocata dall'acqua deve considerare la diluizione del gas di taratura per l'NO con vapore acqueo e scalare la concentrazione di vapore acqueo nella miscela in proporzione a quella prevista durante l'esecuzione delle prove.

Far passare un gas di calibrazione di NO avente una concentrazione dall'80 al 100% del fondo scala del normale intervallo operativo attraverso l'analizzatore (H)CLD e registrare come D il valore di NO. Gorgogliare poi il gas di calibrazione di NO attraverso acqua a temperatura ambiente e farlo passare attraverso l'analizzatore (H)CLD registrando come C il valore di NO. La pressione assoluta di funzionamento dell'analizzatore e la temperatura dell'acqua devono essere determinate e registrate rispettivamente come E e F. Determinare e registrare come G la pressione di vapore di saturazione della miscela che corrisponde alla temperatura dell'acqua nel gorgogliatore F. Calcolare la concentrazione di vapore acqueo (H, in%) della miscela come segue:

$$H = 100 * (G/E)$$

Calcolare la concentrazione attesa (De) del gas di calibrazione di NO diluito (in vapore acqueo) come segue:

$$D_e = D * (1 - H/100)$$

Per lo scarico di motori diesel, stimare la concentrazione massima del vapore acqueo nello scarico (Hm, in%) attesa durante le prove, assumendo un rapporto degli atomi H/C del combustibile di 1,8:1, dalla concentrazione del gas di calibrazione di ${\rm CO_2}$ non diluito (A, come misurato nel punto 1.9.2.1) come segue:

$$H_m = 0,9 * A$$

L'estinzione provocata dall'acqua deve essere calcolata come segue:

% estinzione di
$$H_2O=100*((D_e-C)/D_e)*(H_m/H)$$

e non deve essere superiore al 3% del fondo scala.

dove

D_e = è la concentrazione attesa di NO diluito in ppm

C = è la concentrazione di NO diluito in ppm

H_m,= è la concentrazione massima vapore acqueo in %

H = è la concentrazione effettiva vapore acqueo in %

Nota: È importante che il gas di calibrazione di NO contenga una concentrazione minima di NO₂ per questa prova perché nei calcoli dell'estinzione non si è tenuto conto dell'assorbimento di NO₂ in acqua.

1.10. Frequenza di taratura

Tarare gli analizzatori conformemente al punto 1.5 almeno una volta ogni tre mesi o tutte le volte che vengono effettuate riparazioni o modifiche al sistema che possano influire sulla taratura.

2. TARATURA DEL SISTEMA CVS

2.1. Introduzione

Il sistema CVS viene tarato usando un flussimetro accurato riconducibile a norme nazionali e/o internazionali e un dispositivo di limitazione. Il flusso attraverso il sistema viene misurato a differenti regolazioni del limitatore, misurando i parametri di controllo del sistema e mettendoli in relazione al flusso.

Si possono usare vari tipi di flussimetro, per esempio tubo di Venturi tarato, flussimetro laminare tarato, flussimetro a turbina tarato.

2.2. Taratura della pompa volumetrica (PDP)

Misurare tutti i parametri relativi alla pompa contemporaneamente ai parametri relativi al flussimetro collegato in serie con la pompa. Tracciare il grafico della portata calcolata (in m³/min all'ingresso della pompa, a pressione e temperature assolute) contro una funzione di correlazione che è il valore di una combinazione specifica di parametri della pompa. Determinare poi l'equazione lineare che indica la relazione tra la mandata della pompa e la funzione di correlazione. Se un CVS è dotato di comando a velocità multiple, eseguire la taratura per ogni intervallo usato. Durante la taratura la temperatura dev'essere mantenuta stabile.

2.2.1. Analisi dei dati

La portata dell'aria (Q_s) a ciascuna regolazione del limitatore (minimo 6 punti) viene calcolata in m^3 standard al minuto in base ai dati di flussimetro usando il metodo prescritto dal costruttore. La portata d'aria viene poi convertita in mandata della pompa (V_0) in m^3 /giro alla temperatura e pressione assolute all'ingresso della pompa nel modo seguente:

$$V_0 = \frac{Q_s}{n} * \frac{T}{273} * \frac{101, 3}{p_A}$$

dove

 Q_s = portata d'aria in condizioni normali (101,3 kPa, 273 K), m^3/s

T = temperatura all'ingresso della pompa, K

p_A = pressione assoluta all'ingresso della pompa (p_a-p₁), kPa

n = velocità della pompa, giri/secondo

Per tener conto dell'interazione tra le variazioni di pressione sulla pompa e il grado di scorrimento della pompa, calcolare la funzione di correlazione (X_0) tra la velocità della pompa, il differenziale di pressione dall'ingresso della pompa all'uscita della pompa e la pressione assoluta all'uscita della pompa come segue:

$$X_0 = \frac{1}{n} * \sqrt{\frac{\Delta p_p}{p_A}}$$

dove

 Δp_p = differenziale di pressione dall'ingresso della pompa all'uscita della pompa, kPa

p_A = pressione di mandata assoluta all'uscita della pompa, kPa

Ricavare l'equazione di taratura mediante interpolazione lineare secondo il metodo dei minimi quadrati come segue:

$$V_0 = D_0 - m * (X_0)$$

 D_0 e m sono le costanti intercetta e coefficiente angolare, rispettivamente, che descrivono le linee di regressione.

Per un sistema CVS con velocità multiple, le curve di taratura generate nei vari intervalli di mandata della pompa devono essere approssimativamente parallele e i valori dell'intercetta (D_0) devono crescere al ridursi dell'intervallo di mandata della pompa. I valori calcolati dell'equazione devono corrispondere con un'approssimazione di $\pm 0.5\%$ al valore misurato di V_0 . I valori di m variano da pompa a pompa. L'ingresso di particolato provoca nel tempo una riduzione dello scorrimento della pompa che si riflette in valori più bassi per m. Pertanto, la taratura deve venire eseguita all'avviamento della pompa, dopo importanti lavori di manutenzione e se la verifica del sistema totale (punto 2.4) indica una variazione del grado di scorrimento

2.3. Taratura del tubo di Venturi a portata critica (CFV)

La taratura del CFV è basata sull'equazione di flusso per un tubo di Venturi a portata critica. Il flusso di gas è una funzione della pressione e temperatura di ingresso, come mostrato qui sotto:

$$Q_s = \frac{K_v * p_A}{\sqrt{T}}$$

dove:

 K_v = coefficiente di taratura

p_A = pressione assoluta all'ingresso del tubo di Venturi, kPa

T = temperatura all'ingresso del tubo di Venturi, K

2.3.1. Analisi dei dati

La portata dell'aria (Q_s) a ciascuna regolazione del limitatore (minimo 8 punti) viene calcolata in m^3 normali al minuto in base ai dati di flussimetro usando il metodo prescritto dal costruttore. Il coefficiente di taratura si calcola come segue dai dati di taratura per ciascuna regolazione:

$$K_v = \frac{Q_s * \sqrt{T}}{p_A}$$

dove

 Q_s = portata d'aria in condizioni normali (101,3 kPa, 273 K), m³/s

T = temperatura all'ingresso del tubo di Venturi, K

 p_A = pressione assoluta all'ingresso del tubo di Venturi, kPa

Per determinare il campo di portata critica, tracciare K_v in funzione della pressione di ingresso del tubo di Venturi. Alla portata critica (strozzata), K_v avrà un valore relativamente costante. Al diminuire della pressione (aumento del vuoto), cessa lo strozzamento del tubo di Venturi e K_v diminuisce, indicando che il CFV funziona al di fuori dell'intervallo ammesso.

Calcolare il K_{ν} medio e la deviazione standard per almeno 8 punti nella regione di portata critica. La deviazione standard non deve superare $\pm\,0.3\,\%$ del K_{V} medio.

2.4. Verifica complessiva del sistema

La precisione totale del sistema di campionamento CVS e del sistema analitico viene determinata introducendo una massa nota di un gas inquinante nel sistema funzionante nella maniera normale. Analizzare l'inquinante e calcolare la massa secondo l'allegato III, appendice 2, punto 4.3, salvo nel caso del propano per il quale si usa un fattore di 0,000472 anziché 0,000479 per HC. Utilizzare una delle due tecniche seguenti.

2.4.1. Misurazione con un orificio a portata critica

Alimentare nel sistema CVS una quantità nota di gas puro (monossido di carbonio o propano) attraverso un orificio tarato critico. Se la pressione di immissione è sufficientemente elevata, la portata, che viene regolata mediante l'orificio a portata critica, è indipendente dalla pressione di uscita dall'orificio (\equiv portata critica). Il sistema CVS viene fatto funzionare come nella normale analisi delle emissioni di scarico per circa da 5 a 10 minuti. Analizzare un campione di gas con l'apparecchiatura usuale (sacchetto di campionamento o metodo di integrazione) e calcolare la massa del gas. La massa così determinata deve corrispondere con un'approssimazione del ±3% alla massa nota del gas iniettato.

2.4.2. Misurazione mediante una tecnica gravimetrica

Determinare il peso di una piccola bombola riempita di monossido di carbonio o di propano con una precisione di ± 0.01 grammi. Far funzionare per circa da 5 a 10 minuti il sistema CVS come nella normale analisi delle emissioni allo scarico iniettando monossido di carbonio o propano nel sistema. Determinare la quantità di gas puro scaricato mediante pesata differenziale. Analizzare un campione di gas con l'apparecchiatura usuale (sacchetto di campionamento o metodo di integrazione) e calcolare la massa del gas. La massa così determinata deve corrispondere con un'approssimazione del $\pm 3\,\%$ alla massa nota del gas iniettato.

3. TARATURA DEL SISTEMA PER LA DETERMINAZIONE DEL PARTICOLATO

3.1. Introduzione

Tarare ciascun componente con la frequenza necessaria per rispettare i requisiti di precisione della presente direttiva. Il metodo di taratura da usare è descritto in questo punto per i componenti indicati nell'allegato III, appendice 4, punto 4 e allegato V, punto 2.

3.2. Misura della portata

La taratura dei flussimetri per gas o della strumentazione per la misura dei flussi deve essere riconducibile a norme nazionali e/o internazionali. L'errore massimo del valore misurato non deve eccedere il $\pm 2\%$ del valore letto.

Se il flusso di gas viene determinato mediante misura differenziale di flusso, l'errore massimo della differenza deve essere tale che la precisione di G_{EDF} sia compresa entro il $\pm 4\%$ (vedi anche allegato V, punto 2.2.1, EGA). Questo valore può essere calcolato dalla radice quadrata dell'errore quadratico medio di ciascuno strumento.

3.3. Controllo delle condizioni di flusso parziale

Controllare il campo di velocità e le oscillazioni della pressione dei gas di scarico e regolarli secondo i requisiti dell'allegato V, punto 2.2.1, EP, se applicabile.

3.4. Frequenza di taratura

La strumentazione di misura del flusso deve essere tarata almeno ogni 3 mesi o tutte le volte che si effettua un cambiamento o una riparazione del sistema che possa influenzare la taratura.

4. TARATURA DELL'APPARECCHIATURA DI MISURAZIONE DEL FUMO

4.1. Introduzione

Tarare l'opacimetro con la frequenza necessaria per rispettare i requisiti di precisione della presente direttiva. Il metodo di taratura da usare è descritto in questo punto per i componenti indicati nell'allegato III, appendice 4, punto 5 e allegato V, punto 3.

4.2. Procedimento di taratura

4.2.1. Tempo di riscaldamento

Riscaldare e stabilizzare l'opacimetro secondo le raccomandazioni del costruttore. Se l'opacimetro è provvisto di un sistema aria di spurgo per evitare depositi di fuliggine sulle parti ottiche dello strumento, attivare anche questo sistema e regolarlo secondo le raccomandazioni del costruttore.

4.2.2. Determinazione della risposta di linearità

Controllare la linearità dell'opacimetro nella modalità di opacità secondo le raccomandazioni del costruttore. Introdurre nell'opacimetro tre filtri di densità neutri di trasmittanza nota conformi ai requisiti dell'allegato III, appendice 4, punto 5.2.5, e registrare i valori. I filtri di densità neutri devono avere opacità nominali approssimativamente del 10%, 20% e 40%.

La linearità non deve differire di oltre il $\pm 2\%$ di opacità dal valore nominale del filtro di densità neutro. Eventuali deviazioni dalla linearità superiori al valore di cui sopra devono essere corrette prima di eseguire la prova.

4.3. Frequenza di taratura

Tarare l'opacimetro secondo il punto 4.2.2 almeno ogni 3 mesi o tutte le volte che si effettua una riparazione o un cambiamento del sistema che possa influenzare la taratura.

CARATTERISTICHE TECNICHE DEL COMBUSTIBLE DI RIFERIMENTO PRESCRITTO PER PROVE DI OMOLOGAZIONE E PER VERIFICARE LA CONFORMITÀ DELLA PRODUZIONE

1. COMBUSTIBILE DIESEL (1)

IT

Parametro	TT 1:3	Lim	iti (²)	1 1 1·	Pubblicazione
	Unità	Minimo	Massimo	Metodo di prova	
Numero di cetano (³)		52,0	54,0	EN-ISO 5165	1998 (⁴)
Densità a 15°C	kg/m³	833	837	EN-ISO 3675	1995
Distillazione:					
— punto 50%	°C	245	_	EN-ISO 3405	1998
— punto 95%	°C	345	350	EN-ISO 3405	1998
— p.to di ebollizione finale	°C	_	370	EN-ISO 3405	1998
Punto di infiammabilità	°C	55	_	EN 22719	1993
CFPP	°C	_	- 5	EN 116	1981
Viscosità a 40°C	mm^2/s	2,5	3,5	EN-ISO 3104	1996
Idrocarburi aromatici policiclici	% m/m	3,0	6,0	IP 391 (*)	1995
Tenore di zolfo (⁵)	mg/kg	_	300	pr. EN-ISO/DIS 14596	1998 (4)
Corrosione del rame		_	1	EN-ISO 2160	1995
Conradson (10% DR)	% m/m	_	0,2	EN-ISO 10370	
Tenore in ceneri	% m/m	_	0,01	EN-ISO 6245	1995
Tenore in acqua	% m/m	_	0,05	EN-ISO 12937	1995
Indice di neutralizzazione (acido forte)	mg KOH/g	_	0,2	ASTM D 974-95	1998 (4)
Stabilità all'ossidazione (6)	mg/ml	_	0,025	EN-ISO 12205	1996
(*) Metodi nuovi e migliori per gli aromatici policiclici in corso di sviluppo	% m/m	_	_	EN 12916	[1997] (⁴)

- (¹) Se è richiesto calcolo dell'efficienza termica di un motore o veicolo, il potere calorifico di un combustible può essere calcolato da: Energia specifica (potere calcorifico) (netto) in $MJ/kg = (46,423 8,792d^2 + 3,170d) (1 (x + y + s)) + 9,420s 2,499x$ dove
 - d = è la densità a 15°C
 - x = e la frazione in massa dell'acqua (%/100)
 - y = è la frazione in massa delle ceneri (%/100)
 - s = è la frazione in massa dello zolfo (%/100)
- (²) I valori indicati nella specifica sono «valori effettivi». Per stabilire i loro valori limite sono state applicate le condizioni ISO 4259, Petroleum products—Determination and application of precision data in relation to methods of test, e nel fissare un valore minimo si è tenuto conto di una differenza minima di 2R sopra lo zero; nel fissare un valore massimo e uno minimo la differenza minima è 4R (R = riproducibilità). Nonostante questa precauzione necessaria per ragioni statistiche, il produttore di un combustibile deve comunque mirare ad un valore zero quando il valore massimo stabilito è 2R e al valore medio quando siano indicati limite massimo e limite minimo. In caso di dubbio sulla conformità di un combustibile alle specifiche, si applicano le condizioni ISO 4259.
- (3) La forcella del numero di cetano non è conforme al requisito di una forcella minima di 4R. Tuttavia, in caso di controversia tra il fornitore e il consumatore del combustibile, si possono applicare le condizioni ISO 4259 per risolvere tali controversie, eseguendo misurazioni ripetute fino ad acquisire la necessaria precisione anziché ricorrere a determinazioni singole.
- (4) Il mese di pubblicazione sarà inserito a tempo debito.
- (2) È registrato il valore effettivo del tenore di zolfo del combustibile di prova. Inoltre il combustibile di riferimento utilizzato per l'omologazione dei veicoli o dei motori in base ai valori limite di cui alla riga B della tabella, punto 6.2.1 dell'allegato I della presente direttiva, avrà un valore massimo di tenore di zolfo pari a 50 ppm. La Commissione provvederà a modificare, al più presto ed entro il 31 dicembre 1999, questo allegato in modo che la media di tenore di zolfo dei combustibili sul mercato sia coerente con il combustibile di cui all'allegato IV della direttiva 98/70/CE
- (6) Anche se la stabilità all'ossidazione è controllata, è probabile che la durata di conservazione sia limitata. Per le condizioni e la durata di immagazzinaggio chiedere istruzioni al fornitore.

2. GAS NATURALE (GN)

Sul mercato europeo i combustibili sono disponibili in due gruppi:

- il gruppo H, i cui combustibili di riferimento estremi sono G_{20} e G_{23} ;
- il gruppo L, i cui combustibili di riferimento estremi sono G_{23} e G_{25} .

Le caratteristiche dei combustibili di riferimento G_{20} , G_{23} e G_{25} sono riassunte qui sotto:

Combustibile di riferimento G_{20}

Caratteristiche		Base	Lin		
	Unità		Min.	Max.	Metodo di prova
Composizione:					
Metano		100	99	100	
Resto	% in moli	_	_	1	ISO 6974
[Inerti + C_2/C_2 +)					
N_2					
Tenore di zolfo	mg/m ³ (¹)	_		50	ISO 6326-5

⁽ 1) valore da determinare in condizioni standard (293,2 K (20 $^{\circ}$ C) e 101,3 kPa).

Combustibile di riferimento G₂₃

Caratteristiche		Base	Lir		
	Unità		Min.	Max.	Metodo di prova
Composizione:					
Metano		92,5	91,5	93,5	
Resto	% in moli	_	_	1	ISO 6974
[Inerti + C_2/C_2 +]					
N_2		7,5	6,5	8,5	
Tenore di zolfo	mg/m ³ (¹)		_	50	ISO 6326-5

⁽¹⁾ valore da determinare in condizioni standard (293,2 K (20°C) e 101,3 kPa).

Combustibile di riferimento G_{25}

Caratteristiche		Base	Lin		
	Unità		Min.	Max.	Metodo di prova
Composizione:					
Metano		86	84	88	
Resto	% in moli	_	_	1	ISO 6974
[Inerti + C_2/C_2 +]					
N_2		14	12	16	
Tenore di zolfo	mg/m ³ (¹)	_	_	50	ISO 6326-5

 $^(^1)$ valore da determinare in condizioni standard (293,2 K (20 °C) e 101,3 kPa).

3. GAS DI PETROLIO LIQUEFATTO (GPL)

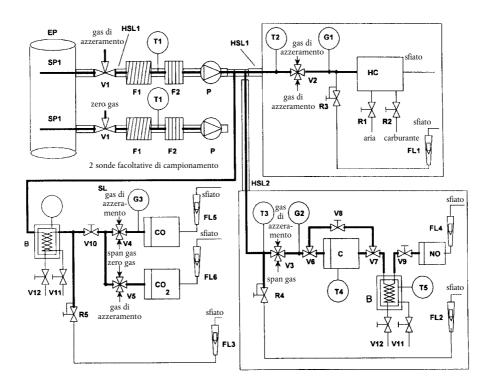
IT

Parametro	Unità	Limiti combustibile A		Limiti combustibile B		March 1: 1:
		Minimo	Massimo	Minimo	Massimo	Metodo di prova
Numero di ottano motore		93,5		93,5		EN 589 Allegato B
Composizione						
Tenore C3	% vol	48	52	83	87	
Tenore C4	% vol	48	52	13	17	ISO 7941
Olefine	% vol	0	12	9	15	
Residuo all'evapo- razione	mg/kg		50		50	NFM 41-015
Tenore totale di zolfo	ppm (in peso) (1)		50		50	EN 24260
Solfuro di idro- geno	_		Assente		Assente	ISO 8819
Corrosione striscia di rame	valutazione		classe 1		classe 1	ISO 6251 (²)
Acqua a 0°C			assente		assente	ispezione visiva

⁽¹) Valore da determinarsi nelle condizioni standard di 293,2 K (20°C) e 101,3 kPa
(²) La determinazione della presenza di materiali corrosivi secondo questo metodo può risultare imprecisa se il campione contiene inibitori della corrosione o altri prodotti chimici che diminuiscono la corrosività del campione nei confronti della striscia di rame. È pertanto vietata l'aggiunta di tali composti al solo scopo di falsare il metodo di prova.

ALLEGATO V

SISTEMI ANALITICI E DI CAMPIONAMENTO


1. DETERMINAZIONE DELLE EMISSIONI GASSOSE

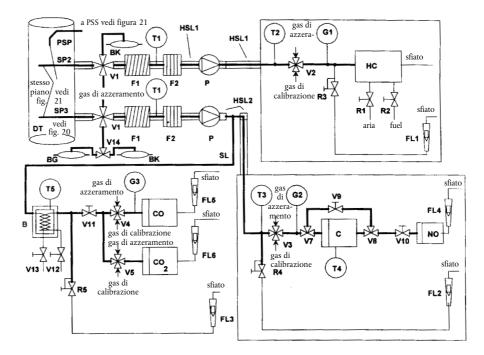
1.1. **Introduzione**

Il punto 1.2 e le figure 7 e 8 contengono la descrizione dettagliata dei sistemi di campionamento e analisi raccomandati. Poiché varie configurazioni possono fornire risultati equivalenti, non è richiesta una stretta conformità a queste figure. Si possono utilizzare componenti addizionali, come strumenti, valvole, solenoidi, pompe e interruttori, per ottenere informazioni supplementari e coordinare le funzioni dei sistemi componenti. Altri componenti che non sono necessari per mantenere la precisione di alcuni sistemi possono essere esclusi se la loro esclusione è basata su un giudizio di buona ingegneristica.

Figura 7

Schema di flusso del sistema di analisi dei gas grezzi di scarico per CO, CO₂, NO_x, HC (solo ESC)

1.2. Descrizione del sistema analitico


Viene descritto un sistema d'analisi per la determinazione delle emissioni gassose nel gas di scarico grezzo (figura 7, solo ESC) o diluito (figura 8, ETC e ESC) basato sull'uso di:

- analizzatore HFID per la misura degli idrocarburi;
- analizzatore NDIR per la misura del monossido di carbonio e del biossido di carbonio;
- analizzatore HCLD o equivalente per la misura degli ossidi d'azoto.

Il campione per tutti i componenti può venire prelevato con una sonda di campionamento o con due sonde di campionamento disposte in stretta vicinanza e suddivise internamente verso i differenti analizzatori. Porre cura nell'evitare che si verifichino condensazioni dei componenti dello scarico (comprendenti acqua e acido solforico) in alcun punto del sistema d'analisi.

Figura 8

Schema di flusso del sistema di analisi dei gas di scarico diluiti per CO, CO₂, NO_x, HC (ETC, facoltativo per ESC)

1.2.1. Componenti delle figure 7 e 8

EP Condotto di scarico

SP1 Sonda di campionamento del gas di scarico (solo figura 7)

Si raccomanda una sonda diritta di acciaio inossidabile con l'estremità chiusa e a fori multipli. Il diametro interno non deve essere maggiore del diametro interno della linea di campionamento. Lo spessore della parete della sonda deve essere non superiore a 1 mm. Prevedere almeno 3 fori in 3 differenti piani radiali, dimensionati in modo da campionare flussi approssimativamente uguali. La sonda deve coprire almeno l'80% del diametro del tubo di scarico. Si possono usare una o due sonde di campionamento.

SP2 Sonda di campionamento di HC del gas di scarico diluito (solo figura 8)

La sonda deve:

- essere definita come primo tratto, lungo da 254 mm a 762 mm della linea di campionamento riscaldata HSL1;
- avere un diametro interno di 5 mm;
- essere installata nella galleria di diluizione DT (vedi punto 2.3, figura 20) in un punto in cui l'aria di
 diluizione e il gas di scarico sono ben miscelati (cioè circa 10 diametri della galleria a valle del punto
 in cui lo scarico entra nella galleria di diluizione);
- essere sufficientemente distante (radialmente) da altre sonde e dalla parete della galleria per non subire influenze di scie o elementi vorticosi;
- essere riscaldata in modo da innalzare la temperatura della corrente gassosa a 463 K \pm 10 K (190 °C \pm 10 °C) all'uscita della sonda.

SP3 Sonda di campionamento di CO, $\mathrm{CO_2}$, $\mathrm{NO_x}$ del gas di scarico diluito (solo figura 8)

La sonda deve:

- essere nello stesso piano di SP2;
- essere sfficientemente distante (radialmente) da altre sonde e dalla parete della galleria per non subire influenze di scie o elementi vorticosi;
- essere isolata e riscaldata sulla sua intera lunghezza ad una temperatura non inferiore a 328 K (55°C) per impedire la condensazione dell'acqua.

HSL1 Linea di campionamento riscaldata

La linea di campionamento fornisce il campione di gas prelevato da una singola sonda al punto/i di divisione e all'analizzatore HC.

La linea di campionamento deve:

- avere un diametro interno non inferiore a 5 mm e non superiore a 13,5 mm;
- essere di acciaio inossidabile o PTFE.
- mantenere una temperatura di parete di 463 K ± 10 K (190°C ± 10°C) misurata su ciascuna sezione riscaldata separatamente controllata, se la temperatura del gas di scarico all'ingresso della sonda di campionamento è uguale o minore di 463 K (190°C);
- mantenere una temperatura di parete maggiore di 453 K (180°C), se la temperatura del gas di scarico sulla sonda di campionamento è superiore a 463 K (190°C);
- mantenere una temperatura del gas di 463 K ±10 K (190°C ±10°C) immediatamente a monte del filtro riscaldato F2 e dell'analizzatore HFID;

HSL2 Linea di campionamento dei NOx riscaldata

La linea di campionamento deve:

- mantenere una temperatura di parete da 328 K a 473 K (da 55°C a 200°C), fino al convertitore C, se si usa un bagno di raffreddamento B, o fino all'analizzatore, se non si usa il bagno di raffreddamento B
- essere di acciaio inossidabile o PTFE.

SL Linea di campionamento per CO e CO₂

La linea deve essere fatta di PTFE o acciaio inossidabile e può essere riscaldata o non riscaldata.

BK Sacco campionamento del fondo (facoltativo; solo figura 8)

Per la misura delle concentrazioni di fondo.

BG Sacco del campione (facoltativo; figura 8 solo CO e CO₂)

Per la misura delle concentrazioni del campione.

F1 Prefiltro riscaldato (facoltativo)

La temperatura deve essere uguale a quella di HSL1.

F2 Filtro riscaldato

Il filtro deve estrarre eventuali particelle solide dal campione di gas prima dell'analizzatore. La temperatura deve essere uguale a quella di HSL1. Cambiare il filtro quando necessario.

P Pompa di campionamento riscaldata

La pompa deve essere riscaldata alla temperatura di HSL1.

HC

Rivelatore a ionizzazione di fiamma riscaldato (HFID) per la determinazione degli idrocarburi. La temperatura deve essere mantenuta tra 453~K~e~473~K~(180~C-200~C).

CO, CO

Analizzatori NDIR per la determinazione del monossido di carbonio e del biossido di carbonio. (facoltativi per la determinazione del rapporto di diluizione per la misura del PT).

NO

Analizzatore CLD o HCLD per la determinazione degli ossidi d'azoto. Se si utilizza un HCLD, mantenerlo ad una temperatura da 328 K a 473 K $(55\,^{\circ}\text{C}-200\,^{\circ}\text{C})$.

C Convertitore

Usare un convertitore per la riduzione catalitica di NO2 a NO prima dell'analisi nel CLD o HCLD.

B Bagno di raffreddamento (facoltativo)

Per raffreddare e condensare l'acqua del campione di gas di scarico. Il bagno deve essere mantenuto ad una temperatura da 273 K a 277 K (0°C-4°C) mediante ghiaccio o mediante refrigerazione. Questo bagno è facoltativo se l'analizzatore non subisce interferenza dal vapore acqueo, come determinato nell'allegato III, appendice 5, punti 1.9.1 e 1.9.2. Se l'acqua viene rimossa mediante condensazione, sorvegliare la temperatura del gas campione o il punto di rugiada all'interno della trappola dell'acqua o a valle di essa. La temperatura del gas campione o il suo punto di rugiada non deve essere superiore a 280 K (7°C). Non sono ammessi essiccatori chimici per rimuovere l'acqua dal campione.

T1, T2, T3 Sensore di temperatura

Per il controllo della temperatura della corrente gassosa.

T4 Sensore di temperatura

Per il controllo della temperatura del convertitore NO2-NO.

T5 Sensore di temperatura

Per il controllo della temperatura del bagno di raffreddamento.

G1, G2, G3 Manometro

Per la misura della pressione nelle linee di campionamento.

R1, R2 Regolatore di pressione

Per il controllo della pressione dell'aria e del combustibile, rispettivamente, per l'HFID.

R3, R4, R5 Regolatore di pressione

Per il controllo della pressione nelle linee di campionamento e nella corrente che fluisce verso gli analizzatori.

FL1. FL2. FL3 Flussimetro

Per il controllo del flusso nel bypass del campione.

FL4-FL6 Flussimetro (facoltativo)

Per il controllo della portata attraverso gli analizzatori.

V1-V5 Valvola di selezione

Valvolame adatto per selezionare il flusso di gas campione, gas di calibrazione o gas di azzeramento agli analizzatori.

V6, V7 Valvola a solenoide

Per bypassare il convertitore NO₂-NO.

V8 Valvola ad ago

Per bilanciare il flusso attraverso il convertitore NO2-NO C e il bypass.

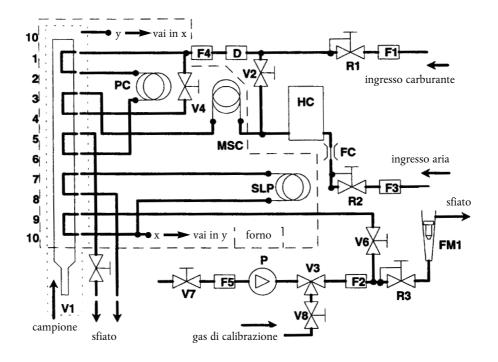
V9, V10 Valvola ad ago

Per regolare i flussi agli analizzatori.

V11, V12 Valvola a scatto (facoltativa)

Per il drenaggio della condensa dal bagno B.

1.3. Analisi degli NMHC (solo motori a GN)


1.3.1. Metodo gascromatografico (GC, figura 9)

Quando si usa il metodo GC, un piccolo volume misurato del campione viene iniettato in una colonna analitica attraverso la quale viene trascinato da un gas di trasporto inerte. La colonna separa i vari componenti in base ai loro punti di ebollizione in modo che essi eluiscano dalla colonna in momenti differenti. Poi essi passano attraverso un rivelatore che fornisce un segnale elettrico che dipende dalla loro concentrazione. Poiché non si tratta di una tecnica di analisi in continuo, può venire utilizzata solo in combinazione con il metodo di campionamento a sacchetto descritto nell'allegato III, appendice 4, punto 3.4.2.

Per gli NMHC si usa un GC automatico con FID. Il gas di scarico deve essere campionato in un sacchetto di campionamento dal quale ne viene prelevata una parte che viene iniettata nel GC. Il campione viene separato in due parti ($CH_4/aria/CO$ e $NMHC/CO_2/H_2O$) sulla colonna Porapak. La colonna a setacci molecolari separa il CH_4 dall'aria e dal CO prima di inviarli al FID dove viene misurata la concentrazione. Un ciclo completo dall'iniezione di un campione a quella di un secondo campione può venire realizzato in 30 s. Per determinare gli NMHC, sottrarre la concentrazione di CH_4 dalla concentrazione d

La figura 9 mostra un GC tipico assemblato per la determinazione di routine del CH₄. Si possono usare anche altri metodi GC sulla base di una buona valutazione ingegneristica.

Figura 9
Schema di flusso per l'analisi del metano (metodo GC)

Componenti della figura 9

PC Colonna Porapak

Usare una Porapak N, $180/300~\mu m$ (50/80~maglia), lunghezza $610~mm \times 2,16~mm$ DI e condizionarla per almeno 12 ore a 423 K ($150~^\circ C$) con gas di trasporto prima dell'uso iniziale.

MSC Colonna a setaccio molecolare

Usare il tipo 13X, $250/350~\mu m$ (45/60~maglia), 1~220~mm lunghezza $\times~2,16~mm$ DI e condizionarla per almeno 12~ore~a~423~K~(150~°C) con gas di trasporto prima dell'uso iniziale.

OV Forno

Per mantenere le colonne e le valvole ad una temperatura stabile per il funzionamento dell'analizzatore e per il condizionamento delle colonne a 423 K (150°C).

SLP Ansa di iniezione del campione

Tubazione d'acciaio inossidabile di lunghezza sufficiente ad ottenere un volume di circa 1 cm³.

P Pompa

Per trasferire il campione al gascromatografo.

D Essiccatore

Usare un essiccatore contenente setaccio molecolare per rimuovere l'acqua ed altri contaminanti che potrebbero essere presenti nel gas di trasporto.

HC

Rivelatore a ionizzazione di fiamma (FID) per la misura della concentrazione del metano.

V1 Valvola di iniezione del campione

Per iniettare il campione prelevato dal sacchetto di campionamento attraverso SL di figura 8. Deve essere di piccolo volume morto, a tenuta di gas e riscaldabile a 423 K (150°C).

V3 Valvola di selezione

Per selezionare gas di calibrazione, campione o flusso nullo.

V2, V4, V5, V6, V7, V8 Valvola ad ago

Per regolare i flussi nel sistema.

R1, R2, R3 Regolatore di pressione

Per controllare rispettivamente i flussi di combustibile (= gas di trasporto), campione e aria.

FC Capillare di flusso

Per il controllo della portata d'aria al FID.

G1, G2, G3 Manometro

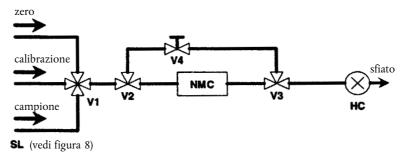
Per il controllo dei flussi di combustibile (= gas di trasporto), campione, e aria rispettivamente.

F1, F2, F3, F4, F5 Filtro

Filtri di metallo sinterizzato per impedire l'ingresso di polveri grossolane nella pompa o nello strumento

FL1

Per la misura della portata del bypass del campione.


1.3.2. Metodo del dispositivo di eliminazione degli idrocarburi diversi dal metano (NMC, Figura 10)

Il dispositivo di eliminazione (cutter) ossida tutti gli idrocarburi escluso il CH_4 a CO_2 e H_2O , in modo che facendo passare il campione attraverso l'NMC il FID rivela solo il CH_4 . Se si usa il campionamento a sacchetto, installare un sistema deviatore di flusso su SL (vedi punto 1.2, figura 8) con cui il flusso possa venire fatto passare alternatamente attraverso il cutter o in parallelo ad esso secondo la parte superiore della figura 10. Per le misure di NMHC, osservare ambedue i valori (HC e CH_4) sul FID e registrarli. Se si usa il metodo di integrazione, installare un NMC in linea con un secondo FID in parallelo al FID normale in HSL1 (vedi punto 1.2, figura 8) secondo la parte inferiore della figura 10. Per la misurazione di NMHC, osservare i valori dei due FID (HC e CH_4) e registrarli.

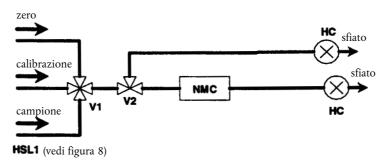

Caratterizzare il cutter a 600 K (327°C) o temperatura superiore prima di controllare il suo effetto catalitico su CH_4 e C_2H_6 a valori di H_2O rappresentativi delle condizioni della corrente di scarico. Il punto di rugiada e il livello di O_2 della corrente di scarico campionata devono essere noti. Registrare la risposta relativa del FID al CH_4 (vedi allegato III, appendice 5, punto 1.8.2).

Figura 10

Schema di flusso per l'analisi del metano con il dispositivo di eliminazione degli idrocarburi diversi dal metano (NMC)

Metodo di campionamento a sacchetto

Metodo di integrazione

Componenti della figura 10

NMC Cutter idrocarburi diversi dal metano

Per ossidare tutti gli idrocarburi tranne il metano.

HC

Rivelatore a ionizzazione di fiamma riscaldato (HFID) per la misura delle concentrazioni di HC e CH_4 . La temperatura deve venire mantenuta su 453 K-473 K (180 °C-200 °C).

V1 Valvola di selezione

Per selezionare campione, gas di azzeramento e gas di calibrazione. V1 è identica a V2 della figura 8.

V2, V3 Valvola a solenoide

Per il bypass dell'NMC.

V4 Valvola ad ago

Per bilanciare il flusso attraverso l'NMC e il bypass.

R1 Regolatore di pressione

Per il controllo della pressione nella linea di campionamento e del flusso verso HFID. R1 è identico a R3 della figura.

FL1 Flussimetro

Per la misura della portata del bypass del campione. FL1 è identico a FL1 della figura 8.

2. DILUIZIONE DEL GAS DI SCARICO E DETERMINAZIONE DEL PARTICOLATO

2.1. Introduzione

ΙΤ

I punti 2.2, 2.3 e 2.4 e le figure da 11 a 22 contengono la descrizione dettagliata dei sistemi di diluizione e ampionamento raccomandati. Poiché varie configurazioni possono fornire risultati equivalenti, non è richiesta una tretta conformità a queste figure. Si possono utilizzare componenti addizionali, come strumenti, valvole, solenoidi, ompe e interruttori, per ottenere informazioni supplementari e coordinare le funzioni dei sistemi componenti. Altri componenti che non sono necessari per mantenere la precisione di alcuni sistemi possono essere esclusi se la loro esclusione è basata su un giudizio di buona pratica ingegneristica.

2.2. Sistema di diluizione a flusso parziale

Nelle figure da 11 a 19 è descritto un sistema di diluizione basato sulla diluizione di una parte della corrente di gas di scarico. La divisione della corrente di gas di scarico e il successivo processo di diluizione possono essere effettuati mediante sistemi di diluizione di differente tipo. Per la successiva raccolta del particolato, si può trasferire al sistema di campionamento del particolato l'intero gas di scarico diluito o solo una frazione dello stesso (punto 2.4, figura 21). Il primo metodo è detto metodo di campionamento totale, il secondo metodo di campionamento frazionario.

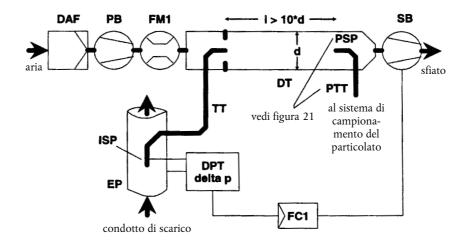
Il calcolo del rapporto di diluizione dipende dal tipo di sistema usato. Sono raccomandati i tipi seguenti:

Sistemi isocinetici (figure 11, 12)

Con questi sistemi, il flusso che entra nel condotto di trasferimento deve concordare con il flusso principale di gas di scarico per quanto riguarda la velocità e/o la pressione del gas e pertanto richiede un flusso uniforme e regolare del gas di scarico in corrispondenza della sonda di campionamento. Normalmente ciò viene ottenuto utilizzando un risonatore e un condotto di avvicinamento rettilineo a monte del punto di campionamento. Il rapporto di divisione viene poi calcolato in base a valori facilmente misurabili, come i diametri dei tubi. Si noti che le condizioni isocinetiche vengono usate solo per far concordare le condizioni di flusso, ma non la distribuzione delle dimensioni. Tipicamente questa ultima condizione non è necessaria perché il particolato è sufficientemente piccolo da seguire i filetti fluidi.

Sistemi a controllo di flusso con misura della concentrazione (figure da 13 a 17)

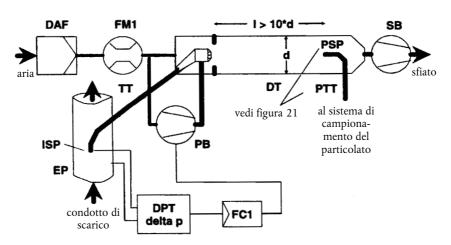
Con questi sistemi, si preleva un campione dalla massa della corrente di gas di scarico regolando il flusso dell'aria di diluizione e il flusso totale del gas di scarico diluito. Il rapporto di diluizione viene determinato dalle concentrazioni di gas traccianti, come ${\rm CO}_2$ o ${\rm NO}_{\rm x}$, presenti naturalmente nello scarico del motore. Le concentrazioni nel gas di scarico di diluizione e nell'aria di diluizione sono misurate, mentre la concentrazione nel gas di scarico grezzo può essere misurata direttamente o determinata in base al flusso di combustibile e all'equazione del bilancio del carbonio, se è nota la composizione del combustibile. I sistemi possono essere controllati in base al rapporto di diluizione calcolato (figure 13, 14) oppure in base al flusso entrante nel condotto di trasferimento (figure 12, 13, 14).


Sistemi a controllo di flusso con misura di portata (figure 18,19)

Con questi sistemi, si preleva un campione dalla massa della corrente di gas di scarico fissando la portata dell'aria di diluizione e la portata totale del gas di scarico diluito. Il rapporto di diluizione viene determinato in base alla differenza delle due portate. Occorre un'accurata taratura dei flussimetri uno rispetto all'altro perché la grandezza relativa delle due portate può essere causa di errori significativi a rapporti di diluizione superiori (15 o più). Il controllo della portata è immediato se si mantiene costante la portata dello scarico diluito e si varia se necessario la portata dell'aria di diluizione.

Quando si usano sistemi di diluizione a flusso parziale, occorre porre attenzione ad evitare potenziali problemi di perdita di particolato nel tubo di trasferimento assicurando che venga prelevato un campione rappresentativo dallo scarico del motore, e di determinazione del rapporto di divisione. Nei sistemi descritti questi punti critici sono attentamente considerati.

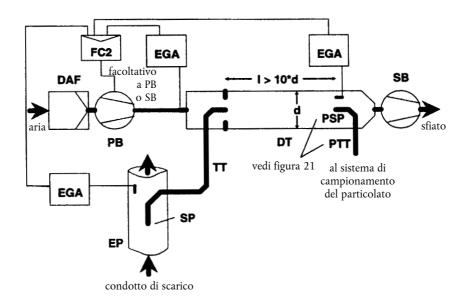
Figura 11


Sistema di diluizione a flusso parziale con sonda isocinetica e campionamento frazionario (controllo tramite SB)

Il gas di scarico grezzo viene trasferito dal condotto di scarico EP alla galleria di diluizione DT attraverso il condotto di trasferimento TT mediante la sonda di campionamento isocinetico ISP. La pressione differenziale del gas di scarico tra il condotto di scarico e l'ingresso della sonda viene misurata con il trasduttore di pressione DPT. Questo segnale viene trasmesso al controllore di portata FC1 che controlla l'aspiratore dinamico SB in modo da mantenere una pressione differenziale di zero sull'estremità della sonda. In queste condizioni, le velocità dei gas di scarico in EP e ISP sono uguali e la portata attraverso ISP e TT è una frazione costante della portata di gas di scarico. Il rapporto di divisione è determinato dalle aree delle sezioni ortogonali di EP e ISP. La portata dell'aria di diluizione viene misurata con il dispositivo di misurazione della portata FM1. Il rapporto di diluizione è calcolato in base alla portata dell'aria di diluizione e al rapporto di divisione.

Figura 12

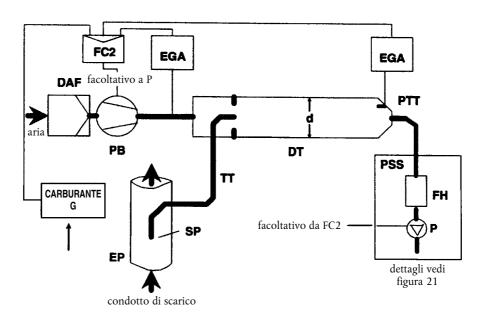
Sistema di diluizione a flusso parziale con sonda isocinetica e campionamento frazionario (controllo tramite PB)



Il gas di scarico grezzo viene trasferito dal condotto di scarico EP alla galleria di diluizione DT attraverso il condotto di trasferimento TT mediante la sonda di campionamento isocinetico ISP. La pressione differenziale del gas di scarico tra il condotto di scarico e l'ingresso della sonda viene misurata con il trasduttore di pressione DPT. Questo segnale viene trasmesso al controllore di portata FC1 che controlla il compressore dinamico PB per mantenere una pressione differenziale di zero sull'estremità della sonda. Questo si effettua prelevando una piccola frazione dell'aria di diluizione, la cui portata è già stata misurata con il dispositivo di misurazione la portata FM1, e alimentandola a TT mediante un orificio pneumatico. In queste condizioni, le velocità del gas di scarico in EP e ISP sono uguali e la portata attraverso ISP e TT è una frazione costante della portata di gas di scarico. Il rapporto di divisione è determinato dalla aree delle sezioni ortogonali di EP e ISP. L'aria di diluizione viene aspirata attraverso DT mediante l'aspiratore

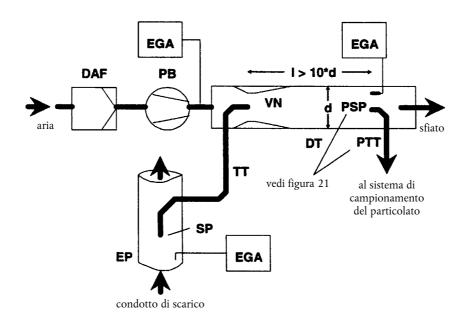
IT

dinamico SB, e la portata viene misurata con FM1 all'ingresso di DT. Il rapporto di diluizione viene calcolato in base alla portata dell'aria di diluizione e al rapporto di divisione.


 $\label{eq:Figura} Figura~13$ Sistema di diluizione a flusso parziale con misura della concentrazione di ${\rm CO_2}$ o ${\rm NO_x}$ e campionamento frazionario

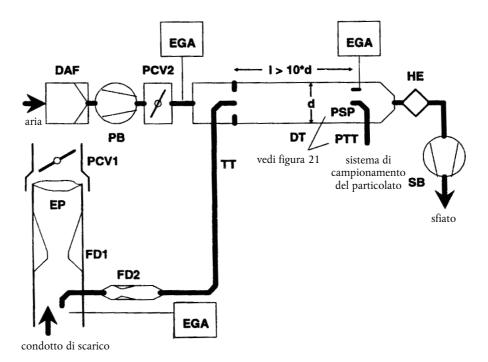
Il gas di scarico grezzo viene trasferito dal condotto di scarico EP alla galleria di diluizione DT attraverso la sonda di campionamento SP e il condotto di trasferimento TT. Le concentrazioni di un gas tracciante $(CO_2 \ o \ NO_x)$ vengono misurate nel gas di scarico grezzo e in quello diluito e inoltre nell'aria di diluizione con l'analizzatore/i dei gas di scarico EGA. Questi segnali vengono trasmessi al controllore di portata FC2 che controlla il compressore dinamico PB o l'aspiratore dinamico SB per mantenere la desiderata divisione dello scarico e il rapporto di diluizione in DT. Il rapporto di diluizione viene calcolato dalle concentrazioni del gas tracciante nel gas di scarico grezzo, nel gas di scarico diluito e nell'aria di diluizione.

Figura 14


Sistema di diluizione a flusso parziale con misura della concentrazione di CO₂, bilancio del carbonio e campionamento totale

Il gas di scarico grezzo viene trasferito dal condotto di scarico EP alla galleria di diluizione DT attraverso la sonda di campionamento SP e il condotto di trasferimento TT. Le concentrazioni di CO_2 vengono misurate nel gas di scarico diluito e nell'aria di diluizione con l'analizzatore/i dei gas di scarico EGA. I segnali di CO_2 e di portata di combustibile G_{FUEL} vengono trasmessi al controllore di portata FC2, o al controllore di portata FC3 del sistema di campionamento del particolato (vedi figura 21). FC2 controlla il compressore dinamico PB, mentre FC3 controlla il sistema di campionamento del particolato (vedi figura 21), aggiustando in questo modo i flussi in ingresso e in uscita del sistema in modo da mantenere la desiderata divisione dello scarico e il rapporto di diluizione in DT. Il rapporto di diluizione viene calcolato in base alle concentrazioni di CO_2 e da G_{FUEL} assumendo valido il bilancio del carbonio

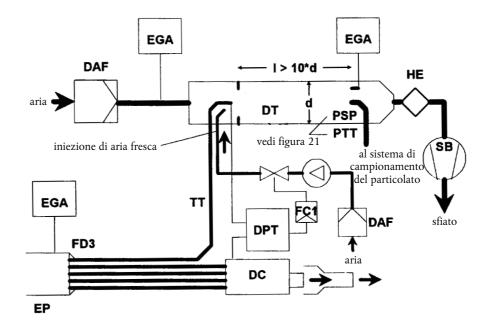
Figura 15


Sistema di diluizione a flusso parziale con Venturi singolo, misura della concentrazione e campionamento frazionario

Il gas di scarico grezzo viene trasferito dal condotto di scarico EP alla galleria di diluizione DT attraverso la sonda di campionamento SP e il condotto di trasferimento TT grazie alla pressione negativa creata dal tubo di Venturi VN in DT. La portata del gas attraverso TT dipende dallo scambio di quantità di moto nella zona del tubo di Venturi ed è pertanto influenzata dalla temperatura assoluta del gas all'uscita di TT. Di conseguenza, la divisione dello scarico per una data portata nella galleria non è costante e il rapporto di diluizione a basso carico è leggermente inferiore a quello a carico elevato. Le concentrazioni del gas tracciante ($\rm CO_2$ o $\rm NO_x$) vengono misurate nel gas di scarico grezzo, nel gas di scarico diluito e nell'aria di diluizione con l'analizzatore/i del gas di scarico EGA, e il rapporto di diluizione viene calcolato in base ai valori così misurati.

Figura 16

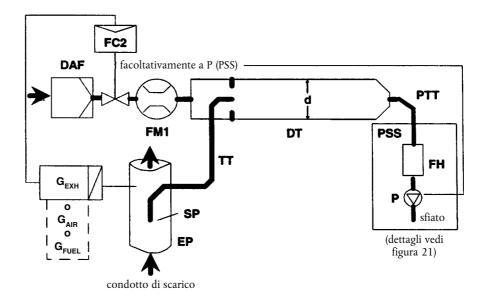
Sistema di diluizione a flusso parziale con Venturi gemelli od orifici gemelli, misura della concentrazione e campionamento frazionario



Il gas di scarico grezzo viene trasferito dal condotto di scarico EP alla galleria di diluizione DT attraverso la sonda di campionamento SP e il condotto di trasferimento TT mediante un divisore di flusso che contiene una serie di orifici o tubi di Venturi. Il primo (FD1) è disposto in EP, il secondo (FD2) in TT. In aggiunta, occorrono due valvole di controllo della pressione (PCV1 e PCV2) per mantenere una divisione costante dello scarico mediante il controllo della contropressione in EP e della pressione in DT. PCV1 è disposta a valle di SP in EP, PCV2 è disposta tra il compressore dinamico PB e DT. Le concentrazioni dei gas traccianti (CO2 o NOx) vengono misurate nel gas di scarico grezzo, nel gas di scarico diluito e nell'aria di diluizione con l'analizzatore/i dei gas di scarico EGA. Queste concentrazioni sono necessarie per controllare la divisione dello scarico e possono essere utilizzate per regolare PCV1 e PCV2 ai fini di un controllo preciso della divisione. Il rapporto di diluizione è calcolato in base alle concentrazioni del gas tracciante.

IT

Figura 17


Sistema di diluizione a flusso parziale con divisione a tubi multipli, misura della concentrazione e campionamento frazionario

Il gas di scarico grezzo viene trasferito dal condotto di scarico EP alla galleria di diluizione DT attraverso il condotto di trasferimento TT mediante il divisore di flusso FD3 che è costituito da un certo numero di tubi delle stesse dimensioni (diametro, lunghezza e raggio della curva uguali) installati in EP. Il gas di scarico che passa attraverso uno di questi tubi viene inviato a DT, e il gas di scarico che passa attraverso il resto dei tubi viene fatto passare attraverso la camera di attenuazione DC. Quindi la divisione dello scarico è determinata dal numero totale di tubi. Un controllo costante della divisione richiede una pressione differenziale pari a zero tra DC e l'uscita di TT, che viene misurata con il trasduttore di pressione differenziale DPT. Si ottiene una pressione differenziale di zero iniettando aria fresca in DT all'uscita di TT. Le concentrazioni del gas tracciante (CO_2 o NO_x) vengono misurate nel gas di scarico grezzo, nel gas di scarico diluito e nell'aria di diluizione con l'analizzatore/i dei gas di scarico EGA. Queste concentrazioni sono necessarie per controllare la divisione dello scarico e possono essere utilizzate per controllare la portata dell'aria di iniezione ai fini di un preciso controllo della divisione. Il rapporto di diluizione è calcolato dalle concentrazioni del gas tracciante.

Figura 18

Sistema di diluizione a flusso parziale con controllo di flusso e campionamento totale

Il gas di scarico grezzo viene trasferito dal condotto di scarico EP alla galleria di diluizione DT attraverso la sonda di campionamento SP e il condotto di trasferimento TT. La portata totale attraverso la galleria viene regolato con il controllore di portata FC3 e la pompa di campionamento P del sistema di campionamento del particolato (vedi figura 18). La portata dell'aria di diluizione viene controllata mediante il controllore di portata FC2, che può utilizzare $G_{\rm EXHW}$, $G_{\rm AIRW}$, o $G_{\rm FUEL}$ come segnale di comando, per ottenere la desiderata divisione dello scarico. La portata del campione in DT è la differenza tra la portata totale e la portata dell'aria di diluizione. La portata dell'aria di diluizione viene misurata con il dispositivo di misurazione del flusso FM1, la portata totale con il dispositivo di misurazione della portata FM3 del sistema di campionamento del particolato (vedi figura 21). Il rapporto di diluizione viene calcolato in base a queste due portate.

Figura 19
Sistema di diluizione a flusso parziale con controllo del flusso e campionamento frazionario

Il gas di scarico grezzo viene trasferito dal condotto di scarico EP alla galleria di diluizione DT attraverso la sonda di campionamento SP e il condotto di trasferimento TT. La divisione dello scarico e la portata entrante in DT vengono controllati mediante il controllore di portata FC2 che regola di conseguenza le portate (o velocità) del compressore dinamico PB e dell'aspiratore dinamico SB. Ciò è possibile perché il campione prelevato con il sistema di campionamento del particolato viene rinviato in DT. Come segnali di comando per FC2 si possono utilizzare $G_{\rm EXHW}$, $G_{\rm AIRW}$, o $G_{\rm FUEL}$. La portata dell'aria di diluizione viene misurata con il dispositivo di misurazione della portata FM1, la portata totale con il dispositivo di misurazione della portata FM2. Il rapporto di diluizione viene calcolato in base a queste due portate.

2.2.1. Componenti delle figure da 11 a 19

EP Condotto di scarico

Il condotto di scarico può essere isolato. Allo scopo di ridurre l'inerzia termica del condotto di scarico, si raccomanda un rapporto dello spessore al diametro inferiore o uguale a 0,015. Limitare l'uso di sezioni flessibili a un rapporto della lunghezza al diametro inferiore o uguale a 12. Minimizzare le curve per ridurre la deposizione per inerzia. Se il sistema include un silenziatore del banco di prova, anche il silenziatore può essere isolato.

Per un sistema isocinetico, il condotto di scarico non deve avere gomiti, curve né cambiamenti bruschi di diametro per almeno sei diametri del condotto a monte e tre diametri del condotto a valle dell'estremità della sonda. La velocità del gas nella zona di campionamento deve essere maggiore di 10 m/s, salvo al minimo. Le oscillazioni di pressione del gas di scarico non devono superare in media i ± 500 Pa. Qualsiasi misura attuata per ridurre le oscillazioni di pressione a parte l'utilizzo di un sistema di scarico del tipo a telaio (includente il silenziatore e il dispositivo di post-trattamento) non deve modificare le prestazioni del motore né provocare la deposizione di particolato.

Per sistemi senza sonde isocinetiche, si raccomanda un condotto rettilineo di 6 diametri del condotto a monte e 3 diametri del condotto a valle dell'estremità della sonda.

SP Sonda di campionamento (figure 10, 14, 15, 16, 18, 19)

Il diametro interno minimo è di 4 mm. Il rapporto minimo tra i diametri del condotto di scarico e della sonda è 4. La sonda deve essere un condotto aperto rivolto verso monte sull'asse del condotto di scarico, oppure una sonda a fori multipli come descritto sotto SP1 nel punto 1.2.1, figura 5.

ISP Sonda di campionamento isocinetico (figure 11, 12)

La sonda di campionamento isocinetico deve essere installata rivolta verso monte sull'asse del condotto di scarico dove sono rispettate le condizioni di flusso indicate nella sezione EP e progettata in modo da assicurare un campione proporzionale del gas di scarico grezzo. Il diametro interno minimo è di 12 mm.

È necessario un sistema di controllo per la divisione isocinetica dello scarico mantenendo una pressione differenziale di zero tra EP e ISP. In queste condizioni, le velocità dei gas di scarico in EP e ISP sono identiche e il flusso di massa attraverso ISP è una frazione costante del flusso del gas di scarico. L'ISP deve essere collegata ad un trasduttore di pressione differenziale DPT. Allo scopo di fornire una pressione differenziale pari a zero tra EP e ISP, si agisce sul controllore di flusso FC1.

FD1, FD2 Divisore di flusso (figura 16)

Nel condotto di scarico EP e nel condotto di trasferimento TT, rispettivamente, è installata una serie di tubi di Venturi o di orifizi allo scopo di ottenere un campione proporzionale del gas di scarico grezzo. Per la divisione proporzionale mediante il controllo delle pressioni in EP e DT è necessario un sistema di controllo costituito da due valvole di controllo della pressione PCV1 e PCV2.

FD3 Divisore di flusso (figura 17)

Nel condotto di scarico EP è installata una serie di tubi (unità a tubi multipli) che forniscono un campione proporzionale del gas di scarico grezzo. Uno dei tubi alimenta il gas di scarico alla galleria di diluizione DT, mentre gli altri tubi trasferiscono il gas di scarico in una camera di attenuazione DC. I tubi devono avere le stesse dimensioni (diametro, lunghezza e raggio di curvatura uguali) in modo che la divisione dello scarico dipenda dal numero totale di tubi. Un sistema di controllo provvede alla divisione proporzionale mantenendo una pressione differenziale pari a zero tra l'uscita dell'unità a tubi multipli in

DC e l'uscita di TT. In queste condizioni, le velocità dei gas di scarico in EP e FD3 sono proporzionali e il flusso in TT è una frazione costante del flusso di gas di scarico. I due punti devono essere collegati ad un trasduttore di pressione differenziale DPT. Il controllo per assicurare una pressione differenziale pari a zero è assicurato dal controllore di flusso FC1.

EGA Analizzatore dei gas di scarico (figure 13, 14, 15, 16, 17)

Si possono utilizzare analizzatori di CO_2 o NO_x (con il metodo del bilancio del carbonio solo CO_2). Gli analizzatori devono essere calibrati come gli analizzatori per la misura delle emissioni gassose. Si possono usare uno o più analizzatori per determinare le differenze di concentrazione. La precisione dei sistemi di misurazione deve essere tale che la precisione di $G_{\rm EDFW,i}$ rientri nel $\pm\,4\,\%$.

TT Condotto di trasferimento (figure da 11 a 19)

Il condotto di trasferimento deve:

- Essere il più breve possibile e comunque non più lungo di 5 m.
- Avere un diametro uguale o maggiore della sonda, ma non superiore a 25 mm.
- Uscire sulla linea mediana della galleria di diluizione e rivolto verso valle.

Se la lunghezza del tubo è di 1 metro o inferiore, il condotto deve essere isolato con materiale avente una conducibilità termica non superiore a 0,05 W/m*K con uno spessore radiale dell'isolamento pari al diametro della sonda. Se il condotto è più lungo di 1 metro, deve essere isolato e riscaldato ad una temperatura minima della parete di 523 K (250°C).

DPT Trasduttore di pressione differenziale (figure 11, 12, 17)

Il trasduttore di pressione differenziale deve coprire un intervallo di ± 500 Pa o minore.

FC1 Controllore di portata (figure 11, 12, 17)

Per i sistemi isocinetici (figure 11, 12), è necessario un controllore di portata per mantenere una pressione differenziale pari a zero tra EP e ISP. La regolazione può essere effettuata mediante

- a) controllo della velocità o della portata sull'aspiratore dinamico SB e mantenimento costante della velocità del compressore dinamico PB durante ciascuna modalità (figura 11) o
- b) regolazione dell'aspiratore dinamico SB su una portata di massa costante dello scarico diluito e controllo della portata sul compressore dinamico PB, e quindi del flusso del campione di gas di scarico in una regione all'estremità del condotto di trasferimento TT (figura 12).

Nel caso di un sistema a controllo di pressione, l'errore residuo nell'anello di regolazione non deve superare i ± 3 Pa. Le oscillazioni di pressione nella galleria di diluizione non devono essere in media superiori a ± 250 Pa.

Per un sistema a tubi multipli (figura 17), è necessario un controllore di flusso per la divisione proporzionale dello scarico allo scopo di mantenere una pressione differenziale di zero tra l'uscita dell'unità a tubi multipli e l'uscita di TT. L'aggiustamento viene effettuato controllando la portata nell'aria di iniezione in DT all'uscita di TT.

PCV1, PCV2 Valvola di controllo pressione (figura 16)

Occorrono due valvole di controllo della pressione per il sistema a Venturi gemelli od orifizi gemelli per la divisione proporzionale del flusso mediante controllo della contropressione di EP e della pressione in DT. Le valvole devono essere disposte a valle di SP in EP e tra PB e DT.

DC Camera di attenuazione (figura 17)

Installare una camera di attenuazione all'uscita dell'unità a tubi multipli per minimizzare le oscillazioni di pressione nel condotto di scarico EP.

VN Venturi (figura 15)

Nella galleria di diluizione DT è installato un tubo di Venturi per creare una pressione negativa nella regione all'uscita del condotto di trasferimento TT. La portata di gas attraverso TT è determinata dallo scambio di quantità di moto nella zona del tubo di Venturi ed è fondamentalmente proporzionale alla portata della ventola di pressione PB che determina un rapporto di diluizione costante. Poiché lo scam-

bio di quantità di moto è influenzato dalla temperatura all'uscita di TT e dalla differenza di pressione tra EP e DT, l'effettivo rapporto di diluizione è leggermente inferiore a basso carico che a carico elevato.

FC2 Controllore di portata (figure 13, 14, 18, 19, facoltativo)

Si può usare un controllore di portata per controllare la portata del compressore dinamico PB e/o dell'aspiratore dinamico SB. Il controllore può essere collegato al segnale della portata di scarico o al segnale della portata di combustibile e/o al segnale differenziale di CO₂ o NO_x. Quando si alimenta con aria pressurizzata (figura 18), FC2 controlla direttamente il flusso d'aria.

FM1 Dispositivo di misura della portata (figure 11, 12, 18, 19)

Contatore di gas o altra strumentazione di portata per misurare la portata dell'aria di diluizione. FM1 è facoltativo se PB è tarato per misurare la portata.

FM2 Dispositivo di misura della portata (figura 19)

Contatore di gas o altra strumentazione di misura della portata per misurare la portata di gas di scarico diluito. FM2 è facoltativo se l'aspiratore dinamico SB è tarato per misurare la portata.

PB Compressore dinamico (figure 11, 12, 13, 14, 15, 16, 19)

Per il controllo della portata d'aria di diluizione, PB può essere collegata ai controllori di portata FC1 o FC2. PB non è richiesta se si usa una valvola a farfalla. PB può essere usato per misurare la portata dell'aria di diluizione, se tarato.

SB Aspiratore dinamico (figure 11, 12, 13, 16, 17, 19)

Solo per sistemi di campionamento frazionario. SB può essere usata per misurare la portata di gas di scarico diluito, se tarato.

DAF Filtro dell'aria di diluizione (figure da 11 a 19)

Si raccomanda di filtrare l'aria di diluizione e di depurarla su carbone vegetale per eliminare gli idrocarburi di fondo. Su richiesta dei fabbricanti dei motori, l'aria di diluizione deve essere campionata secondo buona pratica ingegneristica per determinare i livelli di fondo del particolato, che possono poi venire sottratti dai valori misurati nello scarico diluito.

DT Galleria di diluizione (figure da 11 a 19)

La galleria di diluizione:

- deve essere di lunghezza sufficiente a provocare un miscelamento completo dello scarico e dell'aria di diluizione in condizioni di flusso turbolento;
- deve essere costruita in acciaio inossidabile con:
 - un rapporto dello spessore al diametro non superiore a 0,025 per gallerie con diametro interno maggiore di 75 mm;
 - uno spessore nominale non inferiore a 1,5 mm per gallerie di diluizione di diametro interno uguale o minore di 75 mm;
- deve avere un diametro di almeno 75 mm per il tipo a campionamento frazionario;
- dovrebbe avere un diametro di almeno 25 mm per il tipo a campionamento totale;
- può essere riscaldata ad una temperatura di parete non superiore a 325 K (52°C) mediante riscaldamento diretto oppure mediante preriscaldamento dell'aria di diluizione, purché la temperatura dell'aria non superi i 325 K (52°C) prima dell'introduzione nella galleria di diluizione degli scarichi;
- può essere isolata.

Lo scarico del motore deve essere accuratamente miscelato con l'aria di diluizione. Per sistemi a campionamento frazionario, la qualità della miscelazione deve essere controllata dopo la messa in servizio mediante un profilo di CO₂ della galleria con il motore in funzione (almeno quattro punti di misura equidistanti). Se necessario, si può usare un orifizio di miscelazione.

Nota:

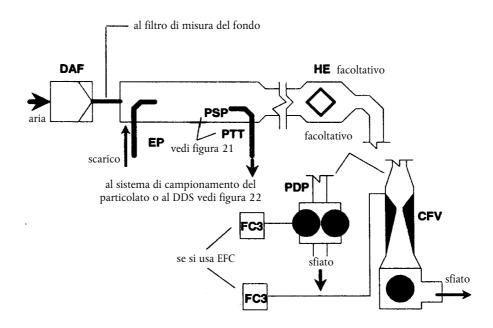
IT

Se la temperatura ambiente in prossimità della galleria di diluizione (DT) è inferiore a 293K (20°C), occorrono precauzioni per evitare perdite di particolato sulle pareti fredde della galleria di diluizione. Pertanto, si raccomanda di riscaldare e/o isolare la galleria entro i limiti indicati.

Ad elevati carichi del motore, la galleria può essere raffreddata mediante mezzi non aggressivi, come una ventola di circolazione, purché la temperatura del fluido di raffreddamento non sia inferiore a 293K (20°C).

HE Scambiatore di calore (figure 16, 17)

Lo scambiatore di calore deve avere una capacità sufficiente per mantenere la temperatura all'ingresso del ventilatore di aspirazione SB entro un intervallo di ±11K dalla temperatura di funzionamento media osservata durante la prova.


2.3 Sistema di diluizione a portata totale

In figura 20 è descritto un sistema di diluizione basato sulla diluizione dello scarico totale secondo il concetto di CVS (campionamento a volume costante). Si deve misurare il volume totale della miscela di gas di scarico e aria di diluizione. Si può utilizzare un sistema PDP o un sistema CFV.

Per la successiva raccolta del particolato, trasferire un campione del gas di scarico diluito al sistema di campionamento del particolato (punto 2.4, figure 21 e 22). Se l'operazione viene effettuata direttamente, si parla di diluizione singola. Se il campione viene diluito ancora una volta nella galleria di diluizione secondaria, si parla di doppia diluizione, utile quando non è possibile rispettare il requisito di temperatura sulla faccia del filtro con la diluizione singola. Benché si tratti in parte di un sistema di diluizione, il sistema di doppia diluizione è descritto come modifica di un sistema di campionamento del particolato nel punto 2.4, figura 22, perchè la maggioranza dei suoi elementi sono comuni a quelli di un tipico sistema di campionamento del particolato.

Figura 20

Sistema di diluizione a flusso pieno

Tutto il gas di scarico grezzo viene miscelato nella galleria di diluizione DT con l'aria di diluizione. La portata del gas di scarico diluito viene misurata con una pompa volumetrica PDP o con un Venturi a portata critica CFV. Si può usare uno scambiatore di calore HE o la compensazione elettronica del flusso EFC per il campionamento proporzionale del particolato e per la determinazione della flusso. Poiché la determinazione della massa di particolato è basata sul flusso di gas di scarico diluito totale, non è necessario il calcolo del rapporto di diluizione.

2.3.1. Componenti della figura 20

EP Condotto di scarico

La lunghezza del condotto di scarico dall'uscita del collettore di scarico del motore, dello scarico di un turbo-compressore o del dispositivo di post-trattamento alla galleria di diluizione non deve essere superiore a 10 m. Se il condotto di scarico a valle del collettore di scarico del motore, dello scarico del turbo-compressore o del dispositivo di post-trattamento supera i 4 m di lunghezza, tutta la tubatura oltre i 4 metri deve essere isolata, salvo per un misuratore dei fumi in linea, se usato. Lo spessore radiale dell'isolamento non deve essere inferiore a 25 mm. La conducibilità termica del materiale isolante deve avere un valore non superiore a 0,1 W/mK misurato a 673 K. Per ridurre l'inerzia termica del condotto di scarico, si raccomanda un rapporto dello spessore sul diametro uguale o inferiore a 0,015. L'uso di sezioni flessibili deve essere limitato ad un rapporto lunghezza su diametro uguale o inferiore a 12.

PDP Pompa volumetrica

La PDP misura il flusso totale di gas di scarico diluito in base al numero di giri della pompa e alla sua cilindrata. La contropressione del sistema di scarico non deve essere abbassata artificialmente dalla PDP o dal sistema di immissione dell'aria di diluizione. La contropressione statica allo scarico, misurata con il sistema PDP in funzione, deve rimanere in un intervallo di $\pm 1,5\,$ kPa intorno alla pressione statica misurata senza collegamento alla PDP a pari regime e carico del motore. La temperatura della miscela gassosa immediatamente a monte della PDP deve essere pari alla temperatura media di funzionamento ($\pm 6\,$ K) osservata durante la prova senza uso della compensazione di flusso. La compensazione di flusso può essere usata solo se la temperatura all'entrata della PDP non supera i 323K (50°C)

CFV Venturi a portata critica

Il CFV misura il flusso totale di scarico diluito mantenendo il flusso nelle condizioni strozzate (portata critica). La contropressione statica allo scarico misurata con il sistema CFV in funzione deve rimanere in un intervallo di ±1,5 kPa della pressione statica misurata senza collegamento al CFV a pari regime e carico del motore. La temperatura della miscela gassosa immediatamente a monte del CFV deve essere pari alla temperatura media di funzionamento osservata durante la prova, senza compensazione di flusso (±11 K).

HE Scambiatore di calore (facoltativo se si usa EFC)

Lo scambiatore di calore deve avere una capacità sufficiente a mantenere la temperatura entro i limiti sopraindicati.

EFC Compensazione elettronica della portata (facoltativo se si usa HE)

Se la temperatura all'ingresso della PDP o del CFV non viene mantenuta entro i limiti sopraindicati, occorre un sistema di compensazione della portata per la misura continua della portata e per il controllo del campionamento proporzionale nel sistema per la determinazione del particolato. A questo scopo, si usano i segnali di portata misurati in continuo per correggere la portata del campione attraverso i filtri del particolato del sistema di campionamento dello stesso (vedi punto 2.4, figure 21, 22).

DT Galleria di diluizione

La galleria di diluizione:

- deve essere di diametro sufficientemente piccolo da provocare un flusso turbolento (numero di Reynolds maggiore di 4 000) e di lunghezza sufficiente a provocare una miscelazione completa del gas
 di scarico con l'aria di diluizione; si può usare un orifizio di miscelazione;
- deve avere un diametro non inferiore a 460 mm con un sistema a diluizione singola;
- deve avere un diametro non inferiore a 210 mm con un sistema a diluizione doppia;
- può essere isolata.

I gas di scarico del motore devono essere diretti a valle del punto in cui vengono introdotti nella galleria di diluizione e accuratamente miscelati.

Quando si utilizza la *diluizione singola*, un campione prelevato dalla galleria di diluizione viene trasferito al sistema di campionamento del particolato (punto 2.4, figura 21). La portata della PDP o del CFV deve essere sufficiente a mantenere lo scarico diluito ad una temperatura minore o uguale a 325 K (52°C) immediatamente prima del filtro principale del particolato.

Quando si usa la doppia diluizione, un campione prelevato dalla galleria di diluizione viene trasferito alla galleria di diluizione secondaria dove viene ulteriormente diluito e poi fatto passare attraverso i filtri di campionamento (punto 2.4, figura 22). La portata della PDP o del CFV deve essere sufficiente a mantenere la corrente di gas di scarico diluiti nella DT ad una temperatura minore o uguale a 464 K (191°C) in corrispondenza della zona di campionamento. Il sistema di diluizione secondaria deve assicurare un'aria di diluizione secondaria sufficiente per mantenere la corrente di gas di scarico diluita due volte ad una temperatura minore o uguale a 325 K (52°C) immediatamente prima del filtro principale del particolato.

DAF Filtro dell'aria di diluizione

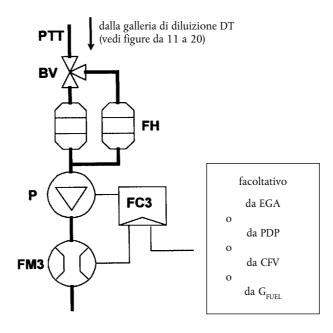
Si raccomanda di filtrare l'aria di diluizione e di depurarla su carbone vegetale per eliminare gli idrocarburi di fondo. Su richiesta dei fabbricanti, l'aria di diluizione deve essere prelevata secondo buona pratica ingegneristica per determinare i livelli di fondo del particolato, che possono poi essere sottratti dai valori misurati nello scarico diluito.

PSP Sonda di campionamento del particolato

La sonda è la sezione iniziale di PTT e:

- deve essere installata rivolta verso monte in un punto in cui l'aria di diluizione e i gas di scarico sono ben miscelati, cioè sull'asse della galleria di diluizione (DT) dei sistemi di diluizione, approssimativamente a 10 diametri della galleria a valle del punto in cui lo scarico entra nella galleria di diluizione;
- deve avere un diametro interno non inferiore a 12 mm;
- può essere riscaldata ad una temperatura di parete non superiore a 325 K (52°C) mediante riscaldamento diretto oppure mediante preriscaldamento dell'aria di diluizione, purché la temperatura dell'aria non superi i 325 K (52°C) prima dell'introduzione nella galleria di diluizione degli scarichi;
- può essere isolata.

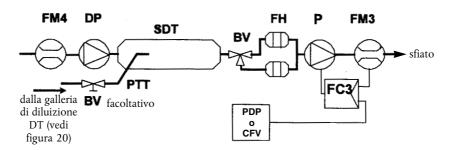
2.4. Sistema di campionamento del particolato


Il sistema di campionamento del particolato è necessario per raccogliere il particolato sul filtro del particolato. Nel caso di diluizione a flusso parziale e campionamento totale, che consiste nel far passare l'intero campione di gas di scarico diluito attraverso i filtri, il sistema di diluizione (punto 2.2, figure 14,18) e di campionamento formano usualmente un'unità integrata. Nel caso della diluizione a flusso parziale con campionamento frazionario o della diluizione a flusso totale, che consiste nel far passare attraverso i filtri solo una frazione del gas di scarico diluito, i sistemi di diluizione (punto 2.2, figure 11, 12, 13, 15, 16, 17, 19; punto 2.3, figura 20) e di campionamento costituiscono usualmente unità differenti.

Nella presente direttiva, il sistema di doppia diluizione (figura 22) di un sistema di diluizione a flusso totale è considerato una modifica specifica di un sistema di campionamento del particolato tipico come illustrato nella figura 21. Il sistema di doppia diluizione include tutte le parti importanti del sistema di campionamento del particolato, come portafiltri e pompa di campionamento, e in aggiunta alcuni dispositivi di diluizione, come una fornitura dell'aria di diluizione e una galleria di diluizione secondaria.

Allo scopo di evitare qualsiasi impatto sugli anelli di regolazione, si raccomanda di tenere in marcia la pompa di campionamento durante l'intera procedura di prova. Per il metodo a filtro singolo, usare un sistema di bypass per far passare il campione attraverso i filtri di campionamento nei momenti desiderati. Si deve minimizzare l'interferenza della procedura di commutazione sugli anelli di regolazione.

Figura 21


Sistema di campionamento del particolato

Un campione del gas di scarico diluito viene prelevato dalla galleria di diluizione DT di un sistema di diluizione a flusso parziale o a flusso totale attraverso la sonda di campionamento del particolato PSP e il condotto di trasferimento del particolato PTT mediante la pompa di campionamento P. Il campione viene fatto passare attraverso il portafiltro o i portafiltri. FH che contengono i filtri di campionamento del particolato. La portata del campione viene controllata mediante il controllore di flusso FC3. Se si usa la compensazione elettronica di flusso EFC (vedi figura 20) il flusso di gas di scarico diluito viene utilizzato come segnale di comando per FC3.

Figura 22

Sistema di doppia diluizione (solo sistema a flusso totale)

Un campione del gas di scarico diluito viene prelevato dalla galleria di diluizione DT di un sistema di diluizione a flusso parziale o a flusso totale attraverso la sonda di campionamento del particolato PSP e il condotto di trasferimento del particolato PTT mediante la pompa di campionamento P. Il campione viene fatto passare attraverso il portafiltro o i portafiltri FH che contengono i filtri di campionamento del particolato. La portata del campione viene controllata mediante il controllore di flusso FC3. Se si usa la compensazione elettronica di flusso EFC (vedi figura 20) il flusso totale di gas di scarico diluito viene utilizzato come segnale di comando per FC3.

IT

PTT Condotto di trasferimento del particolato (figure 21, 22)

Il condotto di trasferimento del particolato deve avere una lunghezza non superiore a 1020 mm, la quale deve essere minimizzata ogni qualvolta possibile. Se applicabile (cioè per i sistemi di campionamento frazionario con diluizione a flusso parziale e per i sistemi di diluizione a flusso totale), deve essere inclusa la lunghezza delle sonde di campionamento (SP, ISP, PSP, rispettivamente, vedi punti 2.2 e 2.3).

Le dimensioni sono valide per:

- il tipo a campionamento frazionario con diluizione del flusso parziale e il sistema di diluizione singola a flusso totale: dalla punta della sonda (SP, ISP, PSP, rispettivamente) ai portafiltri;
- il tipo a campionamento totale con diluizione su flusso parziale: dalla fine della galleria di diluizione ai portafiltri;
- il sistema di doppia diluizione a flusso totale: dalla punta della sonda (PSP) alla galleria di diluizione secondaria.

Il condotto di trasferimento:

- può essere riscaldato ad una temperatura di parete non superiore a 325K (52°C) mediante riscaldamento diretto oppure mediante preriscaldamento dell'aria di diluizione, purché la temperatura dell'aria non superi i 325 K (52°C) prima dell'introduzione degli scarichi nella galleria di diluizione;
- può essere isolato.

SDT Galleria di diluizione secondaria (figura 22)

La galleria di diluizione secondaria deve avere un diametro non inferiore a 75 mm, ed essere di lunghezza sufficiente ad assicurare un tempo di residenza pari ad almeno 0,25 secondi per il campione diluito due volte. Il portafiltro principale, FH, deve essere disposto entro 300 mm dall'uscita di SDT.

La galleria di diluizione secondaria:

- può essere riscaldata ad una temperatura di parete non superiore a 325 K (52°C) mediante riscaldamento diretto oppure mediante preriscaldamento dell'aria di diluizione, purché la temperatura dell'aria non superi i 325 K (52°C) prima dell'introduzione degli scarichi nella galleria di diluizione;
- può essere isolata.

FH Portafiltri (figure 21, 22)

Per i filtri principale e di sicurezza si può usare un alloggiamento unico o alloggiamenti separati. Devono essere soddisfatti i requisiti dell'allegato III, appendice 4, punto 4.1.3.

I portafiltri:

- possono essere riscaldati ad una temperatura di parete non superiore a 325 K (52°C) mediante riscaldamento diretto o mediante preriscaldamento dell'aria di diluizione, purché la temperatura dell'aria non superi i 325 K (52°C) prima dell'introduzione degli scarichi nella galleria di diluizione;
- possono essere isolati.

P Pompa di campionamento (figure 21, 22)

La pompa di campionamento del particolato deve essere disposta ad una distanza sufficiente dalla galleria perché la temperatura del gas all'ingresso sia mantenuta costante (± 3 K), salvo si applichi la correzione di flusso mediante FC3.

DP Pompa dell'aria di diluizione (figura 22)

La pompa dell'aria di diluizione deve essere disposta in modo tale che l'aria di diluizione secondaria venga fornita ad una temperatura di 298 K \pm 5 K (25 °C \pm 5 °C), se l'aria di diluizione non è preriscaldata.

FC3 Controllore di flusso (figure 21, 22)

Usare un controllore di flusso per compensare le variazioni di portata del campione di particolato in conseguenza delle variazioni di temperatura e di contropressione nel percorso del campione, salvo siano disponibili altri mezzi. Il controllore di flusso è necessario se si applica la compensazione elettronica di flusso EFC (vedi figura 20).

FM3 Dispositivo di misura del flusso (figure 21, 22)

Il contatore di gas o la strumentazione di misura del flusso del campione di particolato deve essere disposto/a a distanza sufficiente dalla pompa P del campione perché la temperatura del gas all'ingresso rimanga costante (± 3 K), salvo si applichi la correzione di flusso mediante FC3.

FM4 Dispositivo di misura del flusso (figura 22)

Il contatore di gas o la strumentazione di misura del flusso dell'aria di diluizione devono essere disposti in modo tale che la temperatura del gas all'ingresso rimanga su $298 \text{ K} \pm 5 \text{ K} (25 ^{\circ}\text{C} \pm 5 ^{\circ}\text{C})$.

BV Valvola a sfera (facoltativa)

La valvola a sfera deve avere un diametro interno non minore del diametro interno del tubo di trasferimento del particolato PTT, e un tempo di commutazione inferiore a 0,5 secondi.

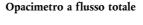
Nota: Se la temperatura ambiente in prossimità di PSP, PTT, SDT, e FH è inferiore a 293K (20°C), prendere delle precauzioni per evitare perdite di particolato sulle pareti fredde di questi parti. Pertanto, si raccomanda di riscaldare e/o isolare queste parti nei limiti indicati nelle rispettive descrizioni. Si raccomanda anche che la temperatura della faccia del filtro durante il campionamento non sia inferiore a 293K (20°C).

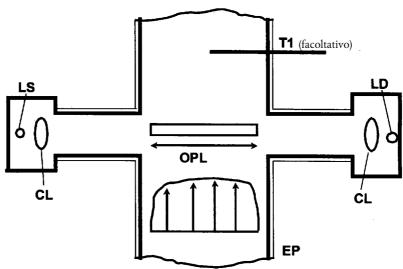
Ad elevati carichi del motore, le parti sopraindicate possono essere raffreddate mediante un mezzo non aggressivo, come una ventola di circolazione, sempreché la temperatura del fluido di raffreddamento non sia inferiore a 293 K ($20\,^{\circ}\text{C}$).

DETERMINAZIONE DEL FUMO

3.1. Introduzione

I punti 3.2 e 3.3 e le figure 23 e 24 contengono descrizioni dettagliate dei sistemi opacimetrici raccomandati. Poiché diverse configurazioni possono fornire risultati equivalenti, non è richiesta un'esatta conformità con le figure 23 e 24. Componenti addizionali come strumenti, valvole, solenoidi, pompe ed interruttori possono essere usati per fornire informazioni addizionali e coordinare le funzioni dei sistemi componenti. Altri componenti che non sono necessari per mantenere la precisione su alcuni sistemi possono essere esclusi se la loro esclusione è basata su buona valutazione ingegneristica.


Principio di misura: la luce viene trasmessa attraverso un tratto di lunghezza specifica del fumo da misurare e si usa la proporzione della luce incidente che raggiunge un ricevitore per valutare le proprietà di oscuramento della luce del materiale. La misurazione del fumo dipende dalla struttura dell'apparecchio e può venire eseguita nel condotto di scarico (opacimetro in linea a flusso totale), al termine del condotto di scarico (opacimetro a flusso totale al termine della linea), oppure prelevando un campione dal condotto di scarico (opacimetro a flusso parziale). Per la determinazione del coefficiente di assorbimento della luce dal segnale di opacità, la lunghezza del cammino ottico dello strumento deve essere fornita dal costruttore dello strumento stesso.


3.2. Opacimetro a flusso totale

Si possono usare due tipi generali di opacimetro generalmente definibili a flusso totale (figura 23). Con l'opacimetro in linea, si misura l'opacità del flusso di scarico totale nel condotto di scarico. Con questo tipo di opacimetro, la lunghezza efficace del cammino ottico è una funzione della configurazione dell'opacimetro.

Con l'opacimetro a fine linea, l'opacità del pennacchio di scarico pieno viene misurata all'uscita del condotto di scarico. Con questo tipo di opacimetro, la lunghezza efficace del cammino ottico è una funzione della configurazione del condotto di scarico e della distanza tra la sua estremità e l'opacimetro.

Figura 23

3.2.1. Componenti della figura 23

EP Condotto di scarico

Con un opacimetro in linea non vi devono essere variazioni del diametro del condotto di scarico entro tre diametri del condotto di scarico prima o dopo la zona di misurazione. Se il diametro della zona di misurazione è maggiore del diametro del condotto di scarico, si raccomanda di usare un condotto convergente gradualmente prima della zona di misurazione.

Con un opacimetro a fine linea, gli 0,6 m terminali del condotto di scarico devono avere sezione trasversale circolare e non contenere gomiti o curve. L'estremità del condotto di scarico deve essere tagliata ortogonalmente. Montare l'opacimetro al centro del pennacchio ad una distanza di 25 ± 5 mm dal termine del condotto di scarico.

OPL Lunghezza del cammino ottico

La lunghezza del cammino ottico oscurato dal fumo, tra la fonte di luce dell'opacimetro e il ricevitore, deve essere tale da tener conto di disuniformità dovute a gradienti di densità e effetto frangia. La lunghezza del cammino ottico deve essere fornita dal costruttore dello strumento tenendo conto di eventuali precauzioni contro il deposito di fuliggine (per esempio aria di spurgo). Se non è disponibile la lunghezza del cammino ottico, questa deve essere determinata secondo la norma ISO IDS 11614, punto 11.6.5. Per la determinazione corretta della lunghezza del cammino ottico è necessaria una velocità minima del gas di scarico di 20 m/s.

LS Sorgente di luce

La sorgente di luce deve essere una lampada a incandescenza con una temperatura di colore nell'intervallo da 2 800 a 3 250 K o un diodo fotoemettitore (LED) verde con un picco spettrale compreso tra 550 e 570 nm. La sorgente di luce deve essere protetta contro il deposito di fuliggine mediante mezzi che non influiscano sulla lunghezza del cammino ottico in misura superiore alle specifiche del costruttore.

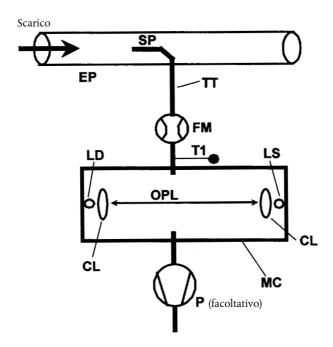
LD Rivelatore di luce

Il rivelatore è una fotocellula o un fotodiodo (con filtro se necessario). Nel caso di una sorgente di luce incandescente, il ricevitore deve avere una risposta spettrale di picco simile alla curva fototopica dell'occhio umano (risposta massima) nell'intervallo da 550 a 570 nm, con una deviazione minore del 4% di tale risposta massima al di sotto di 430 nm e al di sopra di 680 nm. Il rivelatore della luce deve essere protetto contro il deposito di fuliggine mediante mezzi che non influiscano sulla lunghezza del cammino ottico in misura superiore alle specifiche del costruttore.

CL Lente di collimazione

La luce emessa deve collimare con un fascio di diametro massimo di 30 mm. I raggi del fascio luminoso devono essere paralleli all'asse ottico con una tolleranza di 3°.

T1 Sensore di temperatura (facoltativo)


Durante la prova può essere controllata la temperatura del gas di scarico.

3.3. Opacimetro a flusso parziale

Con l'opacimetro a flusso parziale (figura 24), si preleva un campione di scarico rappresentativo dal condotto di scarico e attraverso una linea di trasferimento lo si invia nella camera di misurazione. Con questo tipo di opacimetro, la lunghezza efficace del cammino ottico è una funzione della configurazione dell'opacimetro. I tempi di risposta indicati nel punto seguente valgono per la portata minima dell'opacimetro specificata dal costruttore dello strumento.

Figura 24

Opacimetro a flusso parziale

3.3.1. Componenti della figura 24

EP Condotto di scarico

Il condotto di scarico deve essere un tubo rettilineo di almeno 6 diametri del tubo a monte e 3 diametri del tubo a valle della punta della sonda.

SP Sonda di campionamento

La sonda di campionamento è un tubo aperto rivolto verso monte sull'asse o approssimativamente sull'asse del condotto di scarico. La distanza dalla parete del condotto di scarico deve essere di almeno 5 mm. Il diametro della sonda deve essere tale da garantire un campionamento rappresentativo e un flusso sufficiente attraverso l'opacimetro.

TT Tubo di trasferimento

Il tubo di trasferimento:

- Deve essere il più breve possibile e garantire una temperatura del gas di scarico di 373 \pm 30 K (100 °C \pm 30 °C) all'ingresso della camera di misurazione.
- Deve avere una temperatura di parete sufficientemente al di sopra del punto di rugiada del gas di scarico da impedire la condensazione.
- Deve essere uguale al diametro della sonda di campionamento su tutta la lunghezza.

- Deve avere un tempo di risposta minore di 0,05 s al flusso minimo attraverso lo strumento determinato secondo l'allegato III, appendice 4, punto 5.2.4.
- Non deve avere effetti significativi sul picco di fumo.

FM Dispositivo di misurazione del flusso

Strumentazione di misura del flusso per rilevare quando il flusso entrante nella camera di misurazione è corretto. Le portate minima e massima devono essere specificate dal costruttore dello strumento ed essere tali da rispettare le prescrizioni di tempo di risposta di TT e le specifiche di lunghezza del cammino ottico. Il dispositivo di misurazione del flusso può essere adiacente alla pompa di campionamento P. se usata.

MC Camera di misurazione

La camera di misurazione deve avere una superficie interna non riflettente, o un ambiente ottico equivalente. L'incidenza della luce diffusa sul rivelatore dovuta a riflessioni interne o effetti di diffusione deve essere ridotta al minimo.

La pressione del gas nella camera di misurazione non deve differire più di 0,75 kPa dalla pressione atmosferica. Ove ciò non sia possibile per le caratteristiche di progetto, il valore indicato dall'opacimetro deve essere ricalcolato a pressione atmosferica.

La temperatura di parete della camera di misurazione deve essere regolata con una precisione di ± 5 K tra 343 K (70°C) e 373 K (100°C), e in ogni caso sufficientemente al di sopra del punto di rugiada del gas di scarico da impedire la condensazione. La camera di misurazione deve essere equipaggiata di appropriati dispositivi per la misura della temperatura.

OPL Lunghezza del cammino ottico

La lunghezza del cammino ottico oscurato dal fumo, tra la fonte di luce dell'opacimetro e il ricevitore, deve essere tale da tener conto di disuniformità dovute a gradienti di densità e effetto frangia. La lunghezza del cammino ottico deve essere fornita dal costruttore dello strumento tenendo conto di eventuali precauzioni contro il deposito di fuliggine (per esempio aria di spurgo). Se non è disponibile la lunghezza del cammino ottico, questa deve essere determinata secondo la norma ISO IDS 11614, punto 11.6.5.

LS Sorgente di luce

La sorgente di luce deve essere una lampada a incandescenza con una temperatura di colore nell'intervallo da 2 800 a 3 250 K o un diodo fotoemettitore (LED) verde con un picco spettrale compreso tra 550 e 570 nm. La sorgente di luce deve essere protetta contro il deposito di fuliggine mediante mezzi che non influiscano sulla lunghezza del cammino ottico in misura superiore alle specifiche del costruttore

LD Rivelatore di luce

Il rivelatore è una fotocellula o un fotodiodo (con filtro se necessario). Nel caso di una sorgente di luce incandescente, il ricevitore deve avere una risposta spettrale di picco simile alla curva fototopica dell'occhio umano (risposta massima) nell'intervallo da 550 a 570 nm, con una deviazione minore del 4% di tale risposta massima al di sotto di 430 nm e al di sopra di 680 nm. Il rivelatore della luce deve essere protetto contro il deposito di fuliggine mediante mezzi che non influiscano sulla lunghezza del cammino ottico in misura superiore alle specifiche del costruttore.

CL Lente di collimazione

La luce emessa dalla sorgente LS deve essere collimata in un fascio di diametro massimo di 30 mm. I raggi del fascio luminoso devono essere paralleli all'asse ottico con una tolleranza di 3°.

T1 Sensore di temperatura

Per il controllo della temperatura del gas di scarico all'ingresso della camera di misurazione.

P Pompa di campionamento (facoltativa)

Si può usare una pompa di campionamento a valle della camera di misurazione per trasferire il gas campione attraverso la camera di misurazione.

IT

ALLEGATO VI

CERTIFICATO DI OMOLOGAZIONE CE

Comunicazion	ne riguardante:
— l'omologa	zione (¹)
— la prorog	a dell'omologazione (¹)
	veicolo/un'entità tecnica (tipo di motore/famiglia di motori)/componente (¹)ai sensi della direttiva 88/77/ da ultimo dalla direttiva 1999/96/CE.
Omologazione	e CE n.: Proroga n.:
PARTE I	
0.	Dati generali
0.1.	Marca del veicolo/dell'entità tecnica/del componente (¹):
0.2.	Denominazione data dal costruttore al tipo di veicolo/all'entità tecnica/al componente (¹):
0.3.	Sigla quale apposta dal costruttore sul veicolo/sull'entità tecnica/sul componente (¹):
0.4.	Categoria di veicolo:
0.5.	Categoria di motore: diesel/a GN/a GPL (¹)
0.6.	Nome e indirizzo del costruttore:
0.7.	Nome e indirizzo dell'eventuale mandatario del costruttore:
PARTE II	
1.	Breve descrizione (se del caso): vedi allegato I
2.	Servizio tecnico responsabile dell'esecuzione delle prove:
3.	Data del verbale di prova:
4.	Numero del verbale di prova:
5.	Motivo(Motivi) di un'eventuale proroga dell'omologazione:
6.	Eventuali osservazioni: vedi allegato I
7.	Luogo:
8.	Data:
9.	Firma:

Un elenco di documenti che costituiscono la pratica per l'omologazione inoltrata presso il competente servizio amministrativo (ed ottenibile su richiesta) figura agli allegati.

10.

⁽¹⁾ Cancellare le diciture inutili.

IT

del certificato di omologazione CE n. ... riguardante l'omologazione di un veicolo/un'entità tecnica/un componente $(^1)$

1.	Breve descrizione
1.1.	Particolari da completare in connessione con l'omologazione di un veicolo con un motore installato:
1.1.1.	Marca del motore (nome del costruttore):
1.1.2.	Tipo e descrizione commerciale (menzionare eventuali varianti):
1.1.3.	Sigla apposta dal costruttore sul motore:
1.1.4.	Categoria di veicolo (se applicabile):
1.1.5.	Categoria di motore: diesel/a GN/a GPL (¹):
1.1.6.	Nome e indirizzo del costruttore:
1.1.7.	Nome e indirizzo dell'eventuale mandatario del costruttore (se applicabile):
1.2.	Precisare se il motore di cui al punto 1.1 sia stato omologato come entità tecnica:
1.2.1.	Numero di omologazione del motore/della famiglia di motori (¹):
1.3.	Particolari da compilare relativamente all'omologazione di un motore/di una famiglia di motori (¹)come entità tecnica (condizioni da rispettare nell'installazione di un motore su un veicolo):
1.3.1.	Massima e/o minima depressione nel condotto di aspirazione:
1.3.2.	Massima contropressione allo scarico ammessibile:
1.3.3.	Volume del sistema di scarico:
1.3.4.	Potenza assorbita da dispositivi ausiliari occorrenti per il funzionamento del motore:
1.3.4.1.	Minimo: kW; Basso regime: kW; Alto regime: kW
	Regime A: kW; Regime B: kW; Regime C: kW; Regime di riferimento: kW
1.3.5.	Eventuali restrizioni di utilizzazione:
1.4.	Livelli di emissione del motore/motore capostipite (¹):
1.4.1.	Prova ESC (se applicabile):
	CO: g/kWh
	THC: g/kWh
	NO_x : g/kWh
	PT: g/kWh
1.4.2.	Prova ELR (se applicabile):
	Indice di fumo:m ⁻¹
1.4.3.	Prova ETC (se applicabile):
	CO: g/kWh
	THC: g/kWh (¹)
	NMHC: g/kWh (¹)
	CH ₄ : g/kWh (¹)
	NO _x : g/kWh (¹)
	PT: g/kWh (¹)

⁽¹⁾ Cancellare le diciture inutili.

ALLEGATO VII

ESEMPIO DI PROCEDIMENTO DI CALCOLO

1. PROVA ESC

1.1. Emissioni gassose

Qui sotto sono mostrati i dati di misura per il calcolo dei risultati nelle singole modalità. In questo esempio, CO e NO_x sono misurati su secco, HC su umido. La concentrazione di HC è indicata in propano equivalente (C3) e deve venire moltiplicata per 3 per ottenere il C1 equivalente. Il procedimento di calcolo è identico per le altre modalità.

P	T _a (K)	H _a	G _{EXH}	G _{AIRW}	G _{FUEL}	HC	CO	NO _x
(kW)		(g/kg)	(kg)	(kg)	(kg)	(ppm)	(ppm)	(ppm)
82,9	294,8	7,81	563,38	545,29	18,09	6,3	41,2	495

Calcolo del fattore di correzione da secco a umido K_{W,r} (allegato III, appendice 1, punto 4.2):

$$F_{FH} = \frac{1,969}{\left(1 + \frac{18,09}{545,29}\right)} = 1,9058 \qquad e \qquad K_{W2} = \frac{1,608*7,81}{1\;000 + (1,608*7,81)} = 0,0124$$

$$K_{W,r} = \left(1 - 1,9058 * \frac{18,09}{541,06}\right) - 0,0124 = 0,9239$$

Calcolo delle concentrazioni a umido:

$$CO = 41.2 * 0.9239 = 38.1 \text{ ppm}$$

$$NO_x = 495 * 0.9239 = 457 \text{ ppm}$$

Calcolo del fattore di correzione dell'umidità di NO_x K_{H,D} (allegato III, appendice 1, punto 4.3):

$$A = 0.309 * 18.09 / 541.06 - 0.0266 = -0.0163$$

$$B = -0.209 * 18.09 / 541.06 + 0.00954 = 0.0026$$

$$K_{H,D} = \frac{1}{1 - 0,0163*(7,81 - 10,71) + 0,0026*(294,8 - 298)} = 0,9625$$

Calcolo delle portate massiche delle emissioni (allegato III, appendice 1, punto 4.4):

$$NO_x = 0.001587 * 457 * 0.9625 * 563,38 = 393,27 \text{ g/h}$$

$$CO = 0.000966 * 38.1 * 563,38 = 20,735 \text{ g/h}$$

$$HC = 0.000479 * 6.3 * 3 * 563,38 = 5,100 \text{ g/h}$$

Calcolo delle emissioni specifiche (allegato III, appendice 1, punto 4.5):

Il seguente esempio è riferito al calcolo di CO; il procedimento di calcolo è identico per gli altri componenti.

Le portate massiche delle emissioni delle singole modalità vengono moltiplicate per i rispettivi fattori di ponderazione come indicato nell'allegato III, appendice 1, punto 2.7.1, e sommate per ottenere la portata massica media delle emissioni sul ciclo:

CO =
$$(6.7 * 0.15) + (24.6 * 0.08) + (20.5 * 0.10) + (20.7 * 0.10) + (20.6 * 0.05) + (15.0 * 0.05) + (19.7 * 0.05) + (74.5 * 0.09) + (31.5 * 0.10) + (81.9 * 0.08) + (34.8 * 0.05) + (30.8 * 0.05) + (27.3 * 0.05)$$

= 30.91 g/h

La potenza del motore delle singole modalità viene moltiplicata per i rispettivi fattori di ponderazione come indicato nell'allegato III, appendice 1, punto 2.7.1, e sommata per ottenere la potenza media sul ciclo:

$$P(n) = (0.1 * 0.15) + (96.8 * 0.08) + (55.2 * 0.10) + (82.9 * 0.10) + (46.8 * 0.05) + (70.1 * 0.05) + (23.0 * 0.05) + (114.3 * 0.09) + (27.0 * 0.10) + (122.0 * 0.08) + (28.6 * 0.05) + (87.4 * 0.05) + (57.9 * 0.05)$$

= 60,006 kW

$$\overline{\text{CO}} = \frac{30.91}{60.006} = 0.0515 \text{ g/kWh}$$

Calcolo delle emissioni specifiche di NO_x del punto casuale (allegato III, appendice 1, punto 4.6.1):

Si supponga di aver determinato i seguenti valori sul punto casuale:

 $n_{\rm Z}$ = 1 600 min⁻¹

 $M_Z = 495 \text{ Nm}$

 $NO_{x \text{ mass.Z}}$ = 487,9 g/h (calcolata secondo le formule precedenti)

 $P(n)_Z = 83 \text{ kW}$

 $NO_{x,Z} = 487,9/83 = 5,878 \text{ g/kWh}$

Determinazione del valore delle emissioni dal ciclo di prova (allegato III, appendice 1, punto 4.6.2):

Si supponga che i valori delle quattro modalità di inviluppo sull'ESC siano i seguenti:

n _{RT}	n _{SU}	E _R	E _s	E_{T}	E _U	M_R	M_S	M_{T}	M_U
1 368	1 785	5,943	5,565	5,889	4,973	515	460	681	610

$$\begin{split} E_{TU} &= 5,889 + (4,973 - 5,889) * (1\ 600 - 1\ 368) \ | \ (1\ 785 - 1\ 368) = 5,377\ g/kWh \\ E_{RS} &= 5,943 + (5,565 - 5,943) * (1\ 600 - 1\ 368) \ | \ (1\ 785 - 1\ 368) = 5,732\ g/kWh \\ M_{TU} &= 681 + (601 - 681) * (1\ 600 - 1\ 368) \ | \ (1\ 785 - 1\ 368) = 641,3\ Nm \\ M_{RS} &= 515 + (460 - 515) * (1\ 600 - 1\ 368) \ | \ (1\ 785 - 1\ 368) = 484,3\ Nm \\ E_{Z} &= 5,732 + (5,377 - 5,732) * (495 - 484,3) \ | \ (641,3 - 484,3) = 5,708\ g/kWh \end{split}$$

Confronto dei valori di emissione di NO_x (allegato III, appendice 1, punto 4.6.3):

$$NO_{x \text{ diff}} = 100 * (5,878 - 5,708)/5,708 = 2,98 \%$$

1.2. Emissioni di particolato

La misura del particolato è basata sul principio del campionamento del particolato su tutto il ciclo, il campione e le portate (M_{SAM} e G_{EDF}) vengono però determinati durante le singole modalità. Il calcolo di G_{EDF} dipende dal sistema usato. Negli esempi che seguono, vengono usati un sistema con misurazione della CO_2 e metodo del bilancio del carbonio e un sistema con misurazione del flusso. Quando si utilizza un sistema di diluizione a flusso totale, G_{EDF} viene misurata direttamente mediante l'apparecchiatura CVS

Calcolo di G_{EDF} (allegato III, appendice 1, punti 5.2.3 e 5.2.4):

Si suppongano i seguenti dati di misura della modalità 4. Il procedimento di calcolo è identico per le altre modalità.

G _{EXH}	G _{FUEL}	G _{DILW}	G _{TOTW}	CO _{2D}	CO _{2A}
(kg/h)	(kg/h)	(kg/h)	(kg/h)	(%)	(%)
334,02	10,76	5,4435	6,0	0,657	0,040

a) metodo del bilancio del carbonio

$$G_{EDFW} = \frac{206.5 * 10.76}{0.657 - 0.040} = 3 601.2 \text{ kg/h}$$

b) metodo di misurazione del flusso

$$q = \frac{6,0}{(6,0-5,4435)} = 10,78$$

$$G_{EDFW} = 334,02 * 10,78 = 3600,7 \text{ kg/h}$$

Calcolo della portata massica (allegato III, appendice 1, punto 5.4):

Le portate G_{EDFW} delle singole modalità vengono moltiplicate per i rispettivi fattori di ponderazione, come indicato nell'allegato III, appendice 1, punto 2.7.1, e sommate per ottenere la G_{EDF} media sul ciclo. La portata totale del campione M_{SAM} viene ottenuta per sommatoria dalle portate del campione delle singole modalità.

$$\overline{G_{\text{EDFW}}} = (3\ 567\ *\ 0,15)\ +\ (3\ 592\ *\ 0,08)\ +\ (3\ 611\ *\ 0,10)\ +\ (3\ 600\ *\ 0,10)\ +\ (3\ 618\ *\ 0,05) \\ +\ (3\ 600\ *\ 0,05)\ +\ (3\ 640\ *\ 0,05)\ +\ (3\ 614\ *\ 0,09)\ +\ (3\ 620\ *\ 0,10)\ +\ (3\ 601\ *\ 0,08) \\ +\ (3\ 639\ *\ 0,05)\ +\ (3\ 635\ *\ 0,05)$$

$$=\ 3\ 604,6\ kg/h$$

$$M_{SAM} = 0.226\ +\ 0.122\ +\ 0.151\ +\ 0.152\ +\ 0.076\ +\ 0.076\ +\ 0.076\ +\ 0.076\ +\ 0.136\ +\ 0.151\ +\ 0.121\ +\ 0.076 \\ +\ 0.076\ +\ 0.075$$

$$=\ 1.515\ kg$$

Si supponga che la massa del particolato sui filtri sia pari a 2,5 mg, allora

$$PT_{mass} = \frac{2.5}{1.515} * \frac{3.604.6}{1.000} = 5.948 \text{ g/h}$$

Correzione del fondo (facoltativa)

Si supponga una misurazione del fondo con i valori seguenti. Il calcolo del fattore di diluizione DF è identico al punto 3.1 del presente allegato e non è riportato.

$$M_{d}=0.1\ mg;\ M_{DIL}=1.5\ kg$$

Sommatoria di DF =
$$[(1-1/119,15)*0,15] + [(1-1/8,89)*0,08] + [(1-1/14,75)*0,10] + [(1-1/10,10)*0,10] + [(1-1/18,02)*0,05] + [(1-1/12,33)*0,05] + [(1-1/32,18)*0,05] + [(1-1/6,94)*0,09] + [(1-1/25,19)*0,10] + [(1-1/6,12)*0,08] + [(1-1/20,87)*0,05] + [(1-1/8,77)*0,05] + [(1-1/12,59)*0,05]$$

$$= 0,923$$

$$PT_{mass} = \frac{2,5}{1,515} - \left(\frac{0,1}{1,5} * 0,923\right) * \frac{3604,6}{1000} = 5,726 \text{ g/h}$$

Calcolo delle emissioni specifiche (allegato III, appendice 1, punto 5.5):

$$P(n) = (0.1 * 0.15) + (96.8 * 0.08) + (55.2 * 0.10) + (82.9 * 0.10) + (46.8 * 0.05) + (70.1 * 0.05) + (23.0 * 0.05) + (114.3 * 0.09) + (27.0 * 0.10) + (122.0 * 0.08) + (28.6 * 0.05) + (87.4 * 0.05) + (57.9 * 0.05)$$

$$= 60.006 \text{ kW}$$

$$\overline{PT} = \frac{5.948}{60.006} = 0.099 \text{ g/kWh},$$

con correzione iniziale

$$\overline{PT} = \frac{5,726}{60,006} = 0,095 \text{ g/kWh}$$

Calcolo del fattore di ponderazione specifico (allegato III, appendice 1, punto 5.6):

Si assumono i valori calcolati per la modalità 4 di cui sopra, ne consegue

$$WF_{E,i} = \frac{0.152 * 3 604.6}{1.515 * 3 600.7} = 0.1004$$

Questo valore è compreso nei valori prescritti di 0,10 ± 0,003.

2. PROVA ELR

Poiché la filtrazione Bessel è un procedimento di calcolo della media completamente nuovo nella legislazione europea concernente gli scarichi, nel seguito vengono forniti una spiegazione del filtro di Bessel, un esempio della costruzione di un algoritmo di Bessel e un esempio del calcolo dell'indice finale di fumo. Le costanti dell'algoritmo di Bessel dipendono solo dalla configurazione dell'opacimetro e dalla frequenza di campionamento del sistema di acquisizione dei dati. Il costruttore dell'opacimetro dovrebbe fornire le costanti di filtrazione di Bessel finali per varie frequenze di campionamento e il cliente dovrebbe usare queste costanti per sviluppare l'algoritmo di Bessel e calcolare gli indici di fumo.

2.1. Note generali sul filtro di Bessel

A motivo delle distorsioni ad alta frequenza, il segnale di opacità grezzo mostra di solito un tracciato molto disperso. Per rimuovere queste distorsioni ad alta frequenza, per la prova ELR è necessario un filtro di Bessel. Il filtro di Bessel è un filtro passa-basso di secondo ordine ricorsivo che garantisce la più rapida salita del segnale senza eccesso di correzione.

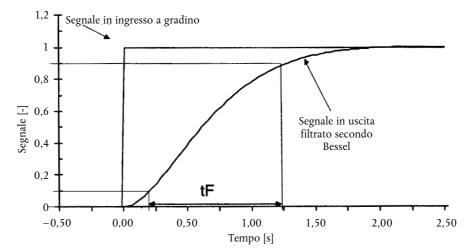
Supponendo un pennacchio di scarico grezzo in tempo reale nel condotto di scarico, ciascun opacimetro mostra una traccia di opacità ritardata e misurata in modo differente. Il ritardo e l'ampiezza della traccia di opacità misurata dipendono principalmente dalla geometria della camera di misurazione dell'opacimetro, incluse le linee di campionamento dello scarico, e dal tempo necessario per elaborare il segnale nei circuiti elettronici dell'opacimetro. I valori che caratterizzano questi due effetti sono detti tempo di risposta fisica ed elettrica e sono specifici di un singolo filtro per ciascun tipo di opacimetro.

L'obiettivo dell'applicazione di un filtro di Bessel è di garantire una caratteristica di filtrazione complessiva uniforme dell'intero sistema opacimetrico, comprendente:

- tempo di risposta fisica dell'opacimetro (tp)
- tempo di risposta elettrica dell'opacimetro (t_e)
- tempo di risposta del filtro di Bessel applicato (t_F)

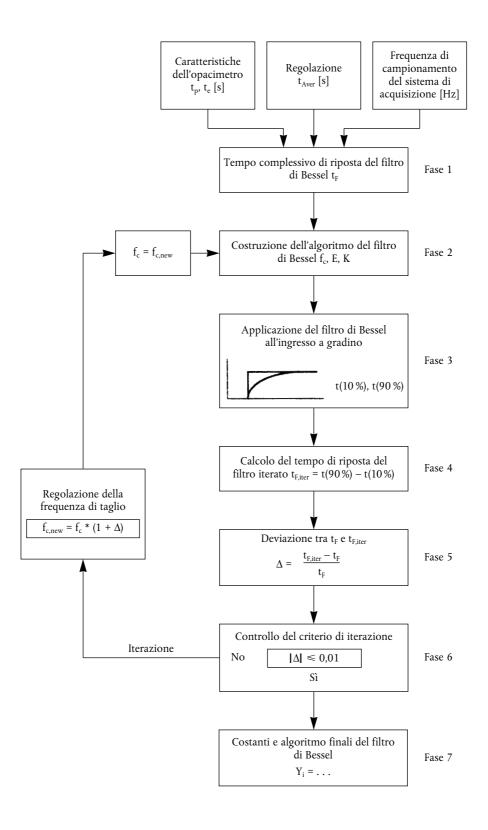
Il tempo di risposta complessivo risultante del sistema t_{Aver} è dato dalla relazione:

$$t_{Aver} = \sqrt{t_F{}^2 + t_p{}^2 + t_e{}^2}$$


e deve essere uguale per tutti i tipi di opacimetro allo scopo di ottenere lo stesso indice di fumo. Pertanto, un filtro di Bessel deve venire creato in modo tale che il tempo di risposta del filtro (t_F) insieme con il tempo di risposta fisica (t_p) ed elettrica (t_e) del singolo opacimetro forniscano il tempo di risposta complessivo (t_{Aver}) prescritto. Poiché t_p e t_e sono valori dati per ogni singolo opacimetro e t_{Aver} nella presente direttiva è definito pari a 1,0 secondi, t_F può venire calcolato come segue:

$$t_F = \sqrt{t_{Aver}^2 + t_p^2 + t_e^2}$$

Per definizione, il tempo di risposta del filtro t_F è il tempo di risalita dal 10% al 90% di un segnale in uscita filtrato a seguito di tun segnale in ingresso a gradino. Pertanto, la frequenza di taglio del filtro di Bessel deve venire iterata in modo tale che il tempo di risposta del filtro di Bessel concordi con il tempo di risalita prescritto.


Figura a

Tracciati del segnale in ingresso a gradino e del segnale in uscita filtrato

In figura a, sono mostrati i tracciati di un segnale in ingresso a gradino e del segnale in uscita filtrato secondo Bessel nonché il tempo di risposta del filtro di Bessel $(t_{\rm F})$.

La costruzione dell'algoritmo di filtrazione di Bessel finale è un processo in più fasi che richiede parecchi cicli di iterazione. Lo schema del procedimento di iterazione è presentato qui sotto.

2.2. Calcolo dell'algoritmo di Bessel

In questo esempio un algoritmo di Bessel viene sviluppato in più fasi secondo il procedimento interativo di cui sopra basato sull'allegato III, appendice 1, punto 6.1.

Per l'opacimento e il sistema di acquisizione dei dati, si suppongano le seguenti caratteristiche:

- tempo di risposta fisica t_p 0,15 s
- tempo di risposta elettrica $t_{\rm e}~0.05\,{\rm s}$
- tempo di risposta complessivo t_{Aver} 1,00 s (per definizione della presente direttiva)
- frequenza di campionamento 150 Hz

Fase 1 Tempo di risposta del filtro di Bessel t_F richiesto:

$$t_F = \sqrt{1^2 - (0.15^2 + 0.05^2)} = 0.987421 \text{ s}$$

Fase 2 Stima della frequenza di taglio e calcolo delle costanti di Bessel E, K per la prima iterazione:

$$f_c = 3.1415/(10 * 0.987421) = 0.318152 \text{ Hz}$$

 $\Delta t = 1/150 = 0.006667 \text{ s}$

$$\Omega = 1/[\tan (3.1415 * 0.006667 * 0.318152)] = 150.076644$$

$$E = \frac{1}{1 + 150,076644 * \sqrt{3 * 0,618034} + 0,618034 + 150,076644^2} = 7,07948 E - 5$$

$$K = 2 * 7,07948 E - 5 * (0,618034 * 150,076644^2 - 1) - 1 = 0,970783$$

Questo fornisce l'algoritmo di Bessel:

$$Y_i = Y_{i-1} + 7,07948 E - 5 * (S_i + 2 * S_{i-1} + S_{i-2} - 4 * Y_{i-2}) + 0,970783 * (Y_{i-1} - Y_{i-2})$$

dove S_i rappresenta i valori del segnale in ingresso a gradino («0» o «1»), e Y_i rappresenta i valori filtrati del segnale in uscita.

Fase 3 Applicazione del filtro di Bessel ad un ingresso a gradino:

Il tempo di risposta t_F , del filtro di Bessel è definito come il tempo di risalita dal 10% al 90% del segnale in uscita filtrato a seguito di un segnale in ingresso a gradino. Per la determinazione di tempi di 10% (t_{10}) e 90% (t_{90}) del segnale di uscita, si deve applicare un filtro di Bessel ad un ingresso a gradino utilizzando i valori di f_c , E og K visti sopra.

I numeri indice, il tempo e i valori di un segnale in ingresso a gradino e i valori conseguenti del segnale in uscita filtrato per la prima e la seconda iterazione sono mostrati in tabella B. I punti adiacenti a t_{10} e t_{90} sono indicati in grassetto.

In tabella B, prima iterazione, il valore del 10% lo si incontra tra i numeri 30 e 31, e il valore del 90% tra i numeri indice 191 e 192. Per il calcolo di $t_{F,iter.}$ si determinano i valori esatti di t_{10} e t_{90} mediante interpolazione lineare tra i punti di misurazione adiacenti, come segue:

$$t_{10} = t_{lower} + \Delta t * (0.1 - out_{lower}) / (out_{upper} - out_{lower})$$

$$t_{90} = t_{lower} + \Delta t * (0.9 - out_{lower}) / (out_{upper} - out_{lower})$$

dove out $_{upper}$ e out $_{lower}$ rispettivamente, sono i punti adiacenti dei segnali in uscita filtrati secondo Bessel, e t_{lower} è il tempo del punto di tempo adiacente, come indicato in tabella B.

$$t_{10} = 0.200000 + 0.006667*(0.1 - 0.099208)/(0.104794 - 0.099208) = 0.200945 \; s$$

$$t_{90} = 0.273333 + 0.006667 * (0.9 - 0.899147)/(0.901168 - 0.899147) = 1.276147 s$$

Fase 4 Tempo di risposta del filtro per il primo ciclo di iterazione:

$$t_{F,iter} = 1,276147 - 0,200945 = 1,075202 \text{ s}$$

Fase 5 Deviazione tra il tempo di risposta del filtro richiesto e quello ottenuto nel primo ciclo di iterazione:

$$\Delta = (1,075202 - 0,987421)/0,987421 = 0,081641)$$

Fase 6 Controllo del criterio di iterazione:

Si richiede $|\Delta| \le 0.01$. Poiché 0.081641 > 0.01, il criterio di iterazione non è rispettato e bisogna avviare un ulteriore ciclo di iterazione. Per questo ciclo di iterazione, si calcola una nuova frequenza di taglio da f_c e Δ come segue:

$$f_{c,new} = 0.318152 * (1 + 0.081641) = 0.344126 \text{ Hz}$$

Questa nuova frequenza di taglio viene utilizzata nel secondo ciclo di iterazione iniziando di nuovo dalla fase 2. L'iterazione deve venire ripetuta fino a quando si rientra nel criterio di iterazione. I valori ottenuti nella prima e nella seconda iterazione sono riassunti in tabella A.

Tabella A

Valori della prima e della seconda iterazione

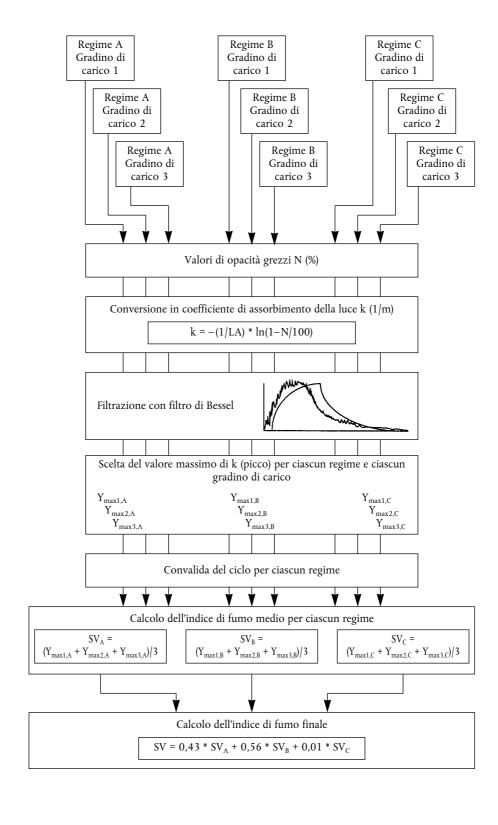
Pa	arametro	1 [^] Iterazione	2 [^] Iterazione
f_c	(Hz)	0,318152	0,344126
E	(-)	7,07948 E-5	8,272777 E-5
K	(-)	0,970783	0,968410
t ₁₀	(s)	0,200945	0,185523
t ₉₀	(s)	1,276147	1,179562
$t_{F,iter}$	(s)	1,075202	0,994039
Δ	(-)	0,081641	0,006657
$f_{c,new}$	(Hz)	0,344126	0,346417

Fase 7 Algoritmo finale di Bessel:

Non appena si rientra nel criterio di iterazione, si calcolano le constanti finali del filtro di Bessel e l'algoritmo finale di Bessel secondo la fase 2. In questo esempio, il criterio di iterazione è stato rispettato dopo la seconda iterazione ($\Delta=0.006657 \le 0.01$). L'algoritmo finale viene poi usato per determinare gli indici di fumo medi (vedi il successivo punto 2.3).

$$Y_i = Y_{i-1} + 8,272777 \; E - 5* (S_i + 2*S_{i-1} + S_{i-2} - 4*Y_{i-2}) + 0,968410* (Y_{i-1} - Y_{i-2})$$

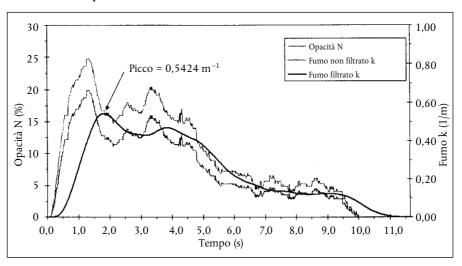
IT


Tabella B

Valori del segnale in ingresso a gradino e del segnale in uscita filtrato secondo Bessel per il primo e il secondo ciclo di iterazione

Indice i	Tempo	Segnale in ingresso a gradino S _i	Segnale in us	cita filtrato Y _i
r_1	[6]	r_1	[-	-]
[-]	[s]	[-]	1ª iterazione	2ª iterazione
-2	-0,013333	0	0,000000	0,000000
-1	-0,006667	0	0,000000	0,000000
0	0,000000	1	0,000071	0,000083
1	0,006667	1	0,000352	0,000411
2	0,013333	1	0,000908	0,001060
3	0,020000	1	0,001731	0,002019
4	0,026667	1	0,002813	0,003278
5	0,033333	1	0,004145	0,004828
~	~	~	~	~
24	0,160000	1	0,067877	0,077876
25	0,166667	1	0,072816	0,083476
26	0,173333	1	0,077874	0,089205
27	0,180000	1	0,083047	0,095056
28	0,186667	1	0,088331	0,101024
29	0,193333	1	0,093719	0,107102
30	0,200000	1	0,099208	0,113286
31	0,206667	1	0,104794	0,119570
32	0,213333	1	0,110471	0,125949
33	0,220000	1	0,116236	0,132418
34	0,226667	1	0,122085	0,138972
35	0,233333	1	0,128013	0,145605
36	0,240000	1	0,134016	0,152314
37	0,246667	1	0,140091	0,159094
~	~	~	~	~
175	1,166667	1	0,862416	0,895701
176	1,173333	1	0,864968	0,897941
177	1,180000	1	0,867484	0,900145
178	1,186667	1	0,869964	0,902312
179	1,193333	1	0,872410	0,904445
180	1,200000	1	0,874821	0,906542
181	1,206667	1	0,877197	0,908605
182	1,213333	1	0,879540	0,910633
183	1,220000	1	0,881849	0,912628
184	1,226667	1	0,884125	0,914589
185	1,233333	1	0,886367	0,916517
186	1,240000	1	0,888577	0,918412
187	1,246667	1	0,890755	0,920276
188	1,253333	1	0,892900	0,922107
189	1,260000	1	0,895014	0,923907
190	1,266667	1	0,897096	0,925676
191	1,273333	1	0,899147	0,927414
192	1,280000	1	0,901168	0,929121
193	1,286667	1	0,903158	0,930799
194	1,293333	1	0,905117	0,932448
195	1,300000	1	0,907047	0,934067
~	~	~	~	~

2.3. Calcolo degli indici di fumo


Nello schema seguente è presentato un procedimento generale per la determinazione dell'indice finale di fumo

In figura b, sono mostrati i tracciati del segnale di opacità grezzo misurato e dei coefficienti di assorbimento della luce (k) non filtrato e filtrato del primo gradino di carico di una prova ELR ed è indicato il valore massimo $Y_{max1,A}$ (picco) del tracciato di k filtrato. Corrispondentemente, la tabella C contiene i valori numerici dell'indice i, del tempo (frequenza di campionamento 150 Hz), dell'opacità grezzo, di k non filtrato e di k filtrato. La filtrazione è stata condotta utilizzando le costanti dell'algoritmo di Bessel sviluppato al punto 2.2 del presente allegato. Data la grande quantità di dati, sono riportate in tabella solo le parti del tracciato di fumo intorno all'inizio e al picco.

Tracciati dell'opacità misurata N, del k del fumo non filtrato e del k del fumo filtrato

Figura b

Il valore del picco (i = 272) è calcolato supponendo i seguenti dati della tabella C. Tutti gli altri indici di fumo sono calcolati nello stesso modo. Per avviare l'algoritmo, S_{-1} , S_{-2} , Y_{-1} e Y_{-2} vengono posti pari a zero.

L _A (m)	0,430
Index i	272
N (%)	16,783
S ₂₇₁ (m ⁻¹)	0,427392
S ₂₇₀ (m ⁻¹)	0,427532
Y ₂₇₁ (m ⁻¹)	0,542383
Y ₂₇₀ (m ⁻¹)	0,542337

Calcolo del valore di k (allegato III, appendice 1, punto 6.3.1):

$$k = -\frac{1}{0,430} * ln \left(1 - \frac{16,783}{100} \right) = 0,427252 \text{ m}^{-1}$$

Questo valore corrisponde a S_{272} nell'equazione seguente.

Calcolo del valore medio di fumo secondo Bessel (allegato III, appendice 1, punto 6.3.2):

Nell'equazione che segue si usano le costanti di Bessel del precedente punto 2.2. Il valore effettivo di k non filtrato calcolato sopra corrisponde a S_{272} (S_i). S_{271} (S_{i-1}) e S_{270} (S_{i-2}) sono i due precedenti valori non filtrati di k, Y_{271} (Y_{i-1}) e Y_{270} (Y_{i-2}) sono i due precedenti valori di k filtrati.

$$Y_{272} = 0.542383 + 8.272777 E - 5 * (0.427252 + 2 * 0.427392 + 0.427532 - 4 * 0.542337) + 0.968410 * (0.542383 - 0.542337)$$

= 0.542389 m^{-1}

Questo valore corrisponde a $Y_{max1,A}$ nell'equazione seguente.

Calcolo dell'indice di fumo finale (allegato III, appendice 1, punto 6.3.3):

Da ciascun tracciato del fumo si ricava il valore massimo di k filtrato per il calcolo ulteriore. Si suppongano i valori seguenti

Regime	Y _{max} (m ⁻¹)				
Regime	Ciclo 1	Ciclo 2	Ciclo 3		
A	0,5424	0,5435	0,5587		
В	0,5596	0,5400	0,5389		
С	0,4912	0,5207	0,5177		

$$\begin{split} SV_A &= (0,5424 + 0,5435 + 0,5587) \mid 3 = 0,5482 \text{ m}^{-1} \\ SV_B &= (0,5596 + 0,5400 + 0,5389) \mid 3 = 0,5462 \text{ m}^{-1} \\ SV_C &= (0,4912 + 0,5207 + 0,5177) \mid 3 = 0,5099 \text{ m}^{-1} \\ SV &= (0,43 * 0,5482) + (0,56 * 0,5462) + (0,01 * 0,5099) = 0,5467 \text{ m}^{-1} \end{split}$$

Convalida del ciclo (allegato III, appendice 1, punto 3.4)

Prima di calcolare SV, il ciclo deve venire convalidato mediante calcolo delle deviazioni standard relative del fumo dei tre cicli per ciascun regime.

Regime	SV medio (m ⁻¹)	Deviazione standard assoluta (m ⁻¹)	Deviazione standard relativa (%)
A	0,5482	0,0091	1,7
В	0,5462	0,0116	2,1
С	0,5099	0,0162	3,2

In questo esempio, il criterio di convalida del 15% è rispettato per ciascun regime.

Tabella C

Valore dell'opacità N, k non filtrato e k filtrato all'inizio del gradino di carico

Indice i	Tempo	Opacità N	k non filtrato	k filtrato
[-]	[s]	[%]	[m-1]	[m-1]
- 2	0,000000	0,000000	0,000000	0,000000
-1	0,000000	0,000000	0,000000	0,000000
0	0,000000	0,000000	0,000000	0,000000
1	0,006667	0,020000	0,000465	0,000000
2	0,013333	0,020000	0,000465	0,000000
3	0,020000	0,020000	0,000465	0,000000
4	0,026667	0,020000	0,000465	0,000001
5	0,033333	0,020000	0,000465	0,000002
6	0,040000	0,020000	0,000465	0,000002
7	0,046667	0,020000	0,000465	0,000003
8	0,053333	0,020000	0,000465	0,000004
9	0,060000	0,020000	0,000465	0,000005
10	0,066667	0,020000	0,000465	0,000006
11	0,073333	0,020000	0,000465	0,000008
12	0,080000	0,020000	0,000465	0,000009
13	0,086667	0,020000	0,000465	0,000011
14	0,093333	0,020000	0,000465	0,000012
15	0,100000	0,192000	0,004469	0,000014
16	0,106667	0,212000	0,004935	0,000018
17	0,113333	0,212000	0,004935	0,000022
18	0,120000	0,212000	0,004935	0,000028
19	0,126667	0,343000	0,007990	0,000036
20	0,133333	0,566000	0,013200	0,000047
21	0,140000	0,889000	0,020767	0,000061
22	0,146667	0,929000	0,021706	0,000082
23	0,153333	0,929000	0,021706	0,000109
24	0,160000	1,263000	0,029559	0,000143
25	0,166667	1,455000	0,034086	0,000185
26	0,173333	1,697000	0,039804	0,000237
27	0,180000	2,030000	0,047695	0,000301
28	0,186667	2,081000	0,048906	0,000378
29	0,193333	2,081000	0,048906	0,000469
30	0,200000	2,424000	0,057067	0,000573
31	0,206667	2,475000	0,058282	0,000693
32	0,213333	2,475000	0,058282	0,000827
33	0,220000	2,808000	0,066237	0,000977
34	0,226667	3,010000	0,071075	0,001144
35	0,233333	3,253000	0,076909	0,001111
36	0,240000	3,606000	0,085410	0,001528
37	0,246667	3,960000	0,093966	0,001758
38	0,253333	4,455000	0,105983	0,001738
39	0,260000	4,818000	0,114836	0,002283
40	0,266667	5,020000	0,119776	0,002283
	0,20000/	2,020000		
~	~	~	~	~

 $Valori~dell'opacit\`{a}~N,~di~k~filtrato~e~non~filtrato~intorno~a~Y_{maks.l,A}~(\equiv~picco,~indicato~in~grassetto)$

Indice i	Tempo	Opacità N	k non filtrato	k filtrato
[-]	[s]	[%]	[m-1]	$[m^{-1}]$
~	~	~	~	~
259	1,726667	17,182000	0,438429	0,538856
260	1,733333	16,949000	0,431896	0,539423
261	1,740000	16,788000	0,427392	0,539936
262	1,746667	16,798000	0,427671	0,540396
263	1,753333	16,788000	0,427392	0,540805
264	1,760000	16,798000	0,427671	0,541163
265	1,766667	16,798000	0,427671	0,541473
266	1,773333	16,788000	0,427392	0,541735
267	1,780000	16,788000	0,427392	0,541951
268	1,786667	16,798000	0,427671	0,542123
269	1,793333	16,798000	0,427671	0,542251
270	1,800000	16,793000	0,427532	0,542337
271	1,806667	16,788000	0,427392	0,542383
272	1,813333	16,783000	0,427252	0,542389
273	1,820000	16,780000	0,427168	0,542357
274	1,826667	16,798000	0,427671	0,542288
275	1,833333	16,778000	0,427112	0,542183
276	1,840000	16,808000	0,427951	0,542043
277	1,846667	16,768000	0,426833	0,541870
278	1,853333	16,010000	0,405750	0,541662
279	1,860000	16,010000	0,405750	0,541418
280	1,866667	16,000000	0,405473	0,541136
281	1,873333	16,010000	0,405750	0,540819
282	1,880000	16,000000	0,405473	0,540466
283	1,886667	16,010000	0,405750	0,540080
284	1,893333	16,394000	0,416406	0,539663
285	1,900000	16,394000	0,416406	0,539216
286	1,906667	16,404000	0,416685	0,538744
287	1,913333	16,394000	0,416406	0,538245
288	1,920000	16,394000	0,416406	0,537722
289	1,926667	16,384000	0,416128	0,537175
290	1,933333	16,010000	0,405750	0,536604
291	1,940000	16,010000	0,405750	0,536009
292	1,946667	16,000000	0,405473	0,535389
293	1,953333	16,010000	0,405750	0,534745
294	1,960000	16,212000	0,411349	0,534079
295	1,966667	16,394000	0,416406	0,533394
296	1,973333	16,394000	0,416406	0,532691
297	1,980000	16,192000	0,410794	0,531971
298	1,986667	16,000000	0,405473	0,531233
299	1,993333	16,000000	0,405473	0,530477
300	2,000000	16,000000	0,405473	0,529704
~	~	~	~	~

3. PROVA ETC

3.1. Emissioni gassose (motore diesel)

Si suppongono i seguenti risultati di prova per un sistema PDP-CVS

V ₀ (m ³ /giro)	0,1776
N _p (giro)	23 073
p _B (kPa)	98,0
p ₁ (kPa)	2,3
T (K)	322,5
H _a (g/kg)	12,8
NO _{x conce} (ppm)	53,7
NO _{x concd} (ppm)	0,4
CO _{conce} (ppm)	38,9
CO _{concd} (ppm)	1,0
HC _{conce} (ppm)	9,00
HC _{concd} (ppm)	3,02
CO _{2,conce} (%)	0,723
W _{act} (kWh)	62,72

Calcolo del flusso di gas di scarico diluito (allegato III, appendice 2, punto 4.1)

$$M_{TOTW}$$
 = 1,293 * 0,1776 * 23 073 * (98,0 - 2,3) * 273 / (101,3 * 322,5)
= 4 237,2 kg

Calcolo del fattore di correzione di NO_x (allegato III, appendice 2, punto 4.2):

$$K_{H, D} = \frac{1}{1 - 0.0182 * (12.8 - 10.71)} = 1.039$$

Calcolo concentrazioni con correzione del fondo (allegato III, appendice 2, punto 4.3.1.1): Supponendo un combustibile diesel di composizione $C_1H_{1.8}$

$$\begin{split} F_S &= 100*\frac{1}{1+(1.8/2)+\left[3.76*\left(1+(1.8/4)\right)\right]} = 13,6 \\ DF &= \frac{13,6}{0.723+(9.00+38.9)*10^{-4}} = 18,69 \\ NO_{x \, conc} &= 53,7-0.4*\left(1-(1/18,69)\right) = 53,3 \ ppm \\ CO_{conc} &= 38,9-1.0*\left(1-(1/18,69)\right) = 37,9 \ ppm \\ HC_{conc} &= 9,00-3,02*\left(1-(1/18,69)\right) = 6,14 \ ppm \end{split}$$

Calcolo del flusso massico delle emissioni (allegato III, appendice 2, punto 4.3.1):

$$\begin{aligned} NO_{x \; mass} &= 0,\!001587*53,\!3*1,\!039*4237,\!2 = 372,\!391 \; g \\ CO_{mass} &= 0,\!000966*37,\!9*4237,\!2 = 155,\!129 \; g \\ HC_{mass} &= 0,\!000479*6,\!14*4237,\!2 = 12,\!462 \; g \end{aligned}$$

Calcolo delle emissioni specifiche (allegato III, appendice 2, punto 4.4):

$$\overline{NO_x} = 372391/6272 = 5,94 \text{ g/kWh}$$
 $\overline{CO} = 155,129/6272 = 2,47 \text{ g/kWh}$
 $\overline{HC} = 12,462/6272 = 0,199 \text{ g/kWh}$

IT

Si suppongono i seguenti risultati di prova per un sistema PDS-CVS con doppia diluizione

M _{TOTW} (kg)	4 237,2
M _{f,p} (mg)	3,030
M _{f,b} (mg)	0,044
M _{TOT} (kg)	2,159
M _{SEC} (kg)	0,909
M _d (mg)	0,341
M _{DIL} (kg)	1,245
DF	18,69
W _{act} (kWh)	62,72

Calcolo delle emissioni massiche (allegato III, appendice 2, punto 5.1):

$$\begin{split} M_f &= 3,\!030 + 0,\!044 = 3,\!074 \text{ mg} \\ M_{SAM} &= 2,\!159 - 0,\!909 = 1,\!250 \text{ kg} \\ PT_{mass} &= \frac{3,\!074}{1,\!250} * \frac{4\,237,\!2}{1\,000} = 10,\!42 \text{ g} \end{split}$$

Calcolo delle emissioni massiche con correzione del fondo (allegato III, appendice 2, punto 5.1):

$$PT_{mass} = \left[\frac{3,074}{1,250} - \left(\frac{0,341}{1,245} * \left(1 - \frac{1}{18,69} \right) \right) \right] * \frac{4237,2}{1000} = 9,32 \text{ g}$$

Calcolo delle emissioni specifiche (allegato III, appendice 2, punto 5.2):

$$\overline{PT}=10.42/62.72=0.166~g/kWh$$

$$\overline{PT}=9.32/62.72=0.149~g/kWh,~con~correzione~del~fondo$$

3.3. Emissioni gassose (motore a GN)

Si suppongono i seguenti risultati di prova per un sistema DPD-CVS con doppia diluizione

M_{TOTW} (kg)	4 237,2
H_a (g/kg)	12,8
NO _{x conce} (ppm)	17,2
NO _{x concd} (ppm)	0,4
CO _{conce} (ppm)	44,3
CO _{concd} (ppm)	1,0
HC _{conce} (ppm)	27,0
HC _{concd} (ppm)	3,02
CH _{4 conce} (ppm)	18,0
CH _{4 concd} (ppm)	1,7
CO _{2,conce} (%)	0,723
W _{act} (kWh)	62,72
·	·

Calcolo del fattore di correzione di NO_x (allegato III, appendice 2, punto 4.2):

$$K_{H,G} = \frac{1}{1 - 0.0329 * (12.8 - 10.71)} = 1.074$$

Calcolo della concentrazione di NMHC (allegato III, appendice 2, punto 4.3.1):

a) metodo CG

$$NMHC_{conce} = 27.0 - 18.0 = 9.0 \text{ ppm}$$

b) metodo NMC

Supponendo un'efficienza riferita al metano di 0,04 e un'efficienza riferita all'etano di 0,98 (vedi allegato III, appendice 5, punto 1.8.4).

$$NMHC_{conce} = \frac{27.0 * (1 - 0.04) - 18.0}{0.98 - 0.04} = 8.4 \text{ ppm}$$

Calcolo delle concentrazioni con correzione del fondo (allegato III, appendice 2, punto 4.3.1.1):

Supponendo un carburante di riferimento G20 (100% metano) di composizione C₁H₄.

$$F_S = 100 * \frac{1}{1 + (4/2) + [3,76 * (1 + (4/4))]} = 9,5$$

$$DF = \frac{9,5}{0,723 + (27,0 + 44,3) * 10^{-4}} = 13,01$$

Per NMHC, la concentrazione di fondo è la differenza tra HC_{concd} og CH_{4 concd}:

$$\begin{split} \text{NO}_{x \, \text{conc}} &= 17.2 - 0.4 * \left(1 - (1/13.01)\right) = 16.8 \text{ ppm} \\ \text{CO}_{\text{conc}} &= 44.3 - 1.0 * \left(1 - (1/13.01)\right) = 43.4 \text{ ppm} \\ \text{NMHC}_{\text{conc}} &= 8.4 - 1.32 * \left(1 - (1/13.01)\right) = 7.2 \text{ ppm} \\ \text{CH}_{4 \, \text{conc}} &= 18.0 - 1.7 * \left(1 - (1/13.01)\right) = 16.4 \text{ ppm} \end{split}$$

Calcolo del flusso massico delle emissioni (allegato III, appendice 2, punto 4.3.1):

$$\begin{aligned} \text{NO}_{x \; mass} &= 0,001587*16,8*1,074*4237,2 = 121,330 \text{ g} \\ \text{CO}_{mass} &= 0,000966*43,4*4237,2 = 177,642 \text{ g} \\ \text{NMHC}_{mass} &= 0,000502*7,2*4237,2 = 15,315 \text{ g} \\ \text{CH}_{4 \; mass} &= 0,000554*16,4*4237,2 = 38,498 \text{ g} \end{aligned}$$

Calcolo delle emissioni specifiche (allegato III, appendice 2, punto 4.4):

$$\overline{NO_x}$$
 = 121,330/62,72 = 1,93 g/kWh
 \overline{CO} = 177,642/62,72 = 2,83 g/kWh
 \overline{NMHC} = 15,315/62,72 = 0,244 g/kWh
 $\overline{CH_4}$ = 38,498/62,72 = 0,614 g/kWh

- 4. FATTORE DI SPOSTAMENTO λ (S_λ)
- 4.1. Calcolo del fattore di spostamento λ (S_{λ}) (1)

$$S_{\lambda} = \frac{2}{\left(1 - \frac{\text{inerti \%}}{100}\right) \left(n + \frac{m}{4}\right) - \frac{O_2 *}{100}}$$

dove:

 S_{λ} = fattore spostamento λ

inert % = % in volume di gas inerti nel carburante (cioè N₂, CO₂, He, ecc.);

O₂* = % in volume dell'ossigeno originale nel carburante;

⁽¹⁾ Stoichiometric Air/Fuel ratios of automotive fuels – SAE J1829, giugno 1987. John B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, 1988, capitolo 3.4. «Combustion stoichiometry.» (pagine 68 – 72).

IT

n e m = sono riferiti al C_nH_m medio rappresentativo degli idrocarburi del carburante, cioè:

$$n = \frac{1 \times \left[\frac{\text{CH}_4\%}{100}\right] + 2 \times \left[\frac{\text{C}_2\%}{100}\right] + 3 \times \left[\frac{\text{C}_3\%}{100}\right] + 4 \times \left[\frac{\text{C}_4\%}{100}\right] + 5 \times \left[\frac{\text{C}_5\%}{100}\right] + \dots}{1 - \frac{\text{diluenti \%}}{100}}$$

$$m = \frac{4 \times \left[\frac{CH_4\%}{100}\right] + 4 \times \left[\frac{C_2H_4\%}{100}\right] + 6 \times \left[\frac{C_2H_6\%}{100}\right] + ...8 \times \left[\frac{C_3H_8\%}{100}\right] + ...}{1 - \frac{diluenti \%}{100}}$$

dove:

CH₄ = % in volume di metano nel carburante,

 C_2 = % in volume di tutti gli idrocarburi C_2 (per.es. C_2H_6 , C_2H_4 , ecc.) nel carburante,

 C_3 = % in volume di tutti gli idrocarburi C_3 (per.es. C_3H_8 , C_3H_6 , ecc.) nel carburante,

 C_4 = % in volume di tutti gli idrocarburi C_4 (per.es. C_4H_{10} , C_4H_8 , ecc.) nel carburante,

 C_5 = % in volume di tutti gli idrocarburi C_5 (per.es. C_5H_{12} , C_5H_{10} , ecc.) nel carburante,

diluenti = % in volume del gas di diluizione nel carburante (cioè. O2*, N2, CO2, He, ecc.).

4.2. Esempio del calcolo del fattore di spostamento λS_{λ} :

Esempio 1: G_{25} : $CH_4 = 86\%$, $N_2 = 14\%$ (in volume)

$$n = \frac{1 \times \left[\frac{CH_4\%}{100}\right] + 2 \times \left[\frac{C_2\%}{100}\right] + \dots}{1 - \frac{\text{diluente }\%}{100}} = \frac{1 \times 0.86}{1 - \frac{14}{100}} = \frac{0.86}{0.86} = 1$$

$$m = \frac{4 \times \left[\frac{CH_4\%}{100}\right] + 4 \times \left[\frac{C_2H_4\%}{100}\right] + ..}{1 - \frac{\text{diluente }\%}{100}} = \frac{4 \times 0.86}{0.86} = 4$$

$$S_{\lambda} = \frac{2}{\left(1 - \frac{\text{inerti \%}}{100}\right)\left(n + \frac{m}{4}\right) - \frac{O_2 *}{100}} = \frac{2}{\left(1 - \frac{14}{100}\right) \times \left(1 + \frac{4}{4}\right)} = 1,16$$

Esempio 2: G_{xy} : $CH_4 = 87\%$, $C_2H_6 = 13\%$ (in volume)

$$n = \frac{1 \times \left[\frac{\text{CH}_4\%}{100}\right] + 2 \times \left[\frac{\text{C}_2\%}{100}\right] + \dots}{1 - \frac{\text{diluente }\%}{100}} = \frac{1 \times 0.87 + 2 \times 0.13}{1 - \frac{0}{100}} = \frac{1.13}{1} = 1.13$$

$$m = \frac{4 \times \left[\frac{\text{CH}_4\%}{100}\right] + 6 \times \left[\frac{\text{C}_2\text{H}_6\%}{100}\right] + ..}{1 - \frac{\text{diluente }\%}{100}} = \frac{4 \times 0.87 + 6 \times 0.13}{1} = 4.26$$

$$S_{\lambda} = \frac{2}{\left(1 - \frac{\text{inerti \%}}{100}\right) \left(n + \frac{m}{4}\right) - \frac{O_2 *}{100}} = \frac{2}{\left(1 - \frac{0}{100}\right) \times \left(1, 13 + \frac{4,26}{4}\right)} = 0,911$$

Esempio 3: USA:
$$CH_4 = 89\%$$
, $C_2H_6 = 4,5\%$, $C_3H_8 = 2,3\%$, $C_6H_{14} = 0,2\%$, $O_2 = 0,6\%$, $N_2 = 4\%$

$$n = \frac{1 \times \left[\frac{\text{CH}_4\%}{100}\right] + 2 \times \left[\frac{\text{C}_2\%}{100}\right] + ..}{1 - \frac{\text{diluente \%}}{100}} = \frac{1 \times 0.89 + 2 \times 0.045 + 3 \times 0.023 + 4 \times 0.002}{1 - \frac{(0.64 + 4)}{100}} = 1.11$$

$$m = \frac{4 \times \left[\frac{CH_4\%}{100}\right] + 4 \times \left[\frac{C_2H_4\%}{100}\right] + 6 \times \left[\frac{C_2H_6\%}{100}\right] + .. + 8 \times \left[\frac{C_3H_8\%}{100}\right]}{1 - \frac{diluente \%}{100}}$$

$$=\frac{4\times0.89+4\times0.045+8\times0.023+14\times0.002}{1-\frac{0.6+4}{100}}=4.24$$

$$S_{\lambda} = \frac{2}{\left(1 - \frac{\text{inerti \%}}{100}\right)\left(n + \frac{m}{4}\right) - \frac{O_2^*}{100}} = \frac{2}{\left(1 - \frac{4}{100}\right) \times \left(1,11 + \frac{4,24}{4}\right) - \frac{0,6}{100}} = 0,96$$