

Via Negrelli 13 39100 Bolzano (BZ)

Tel.: 0471-068620

Fax: 0471-068639

e-mail: info@eco-research.it internet: www.eco-research.it

Rapporto di prova nº

Del 31-ago-16

Rapporto di prova in sostituzione di 160429-01 del 23/06

Pagina 1\4

14:39

22:33

Descrizione

Emissioni gassose

Spettabile:

AGENZIA REGIONALE PER LA

PROTEZIONE

DELL'AMBIENTE DELLA BASILICATA

Via Delia Fisica, 18/C **85100 POTENZA (PZ)**

Accettazione

160429

Data inizio prove

13-apr-16

Data fine prove

22-ago-16

Implanto

RENDINA Ambiente Sri STRADA VICINALE MONTELUNGO - ZONA INDUSTRIALE SAN NICOLA di MELFI (PZ)

Punto di emissione

E1 - FORNO A GRIGLIA

Latitudine

Prelevatore

N 41°03'33"

Longitudine

E 15°42'26"

Riferimento di Legge

AIA EDF FENICE deliberazione della GIUNTA REGIONALE BASILICATA n°428 del 14 apr 2014

Autorizzazione

Eco-Research

Condizioni ambientali

Condizioni di esercizio

Descrizione processo

Tipologia impianto abbattimento

Descrizione punto di prelievo Forma geometrica camino

Affondamenti

Isocinetismo

Altezza totale camino

Altezza dal suolo del punto di prelievo

Alfezza dal suolo ultimo punto di immissione del gas esausto

Temperatura: 25 °C; umidità relativa; 36 % Durante i prelievi l'impianto è in marcia regolare Processo di incenerimento su forno rotante

Filtri a tessuto

Piattaforma di campionamento scoperta dotata di 3 accessi

Circolare

5, 16, 31, 60, 89, 104 cm su un asse grado di isocinetismo medio pari a 0,99

50 m

16,8 m 6.4 m

Misura della Pressione Dinamica in Pascal

PDm = 108

PD1 = 85

PD2 = 85

PD3 = 100 PD4 = 122

PD5 = 125

PD6 = 85

PD8 = 122

PD12 103

PD7 = 96

PD9 = 127

PD10 125

PD11 121

Determinazione della velocità e della portata di flussi gassosi convogliati (metodo UNI 16911:2013 senza Annex C, D, E)

Data inizio campionamento 13/04/2016 Ora inizio campionamento Data fine campionamento 13/04/2016 Ora fine campionamento Temperatura media condotto °C Velocità media m/s 16,4 ± 1 Area della sezione al punto di misura m2 1,131 Diametro della sezione al punto di misura 1,20 m Portata umida nelle condizioni di riferimento 43303 ± 2165 Nm³/h Portata secca nelle condizioni di riferimento Nm³/h 35812 ± 1791 Pressione Atmosferica mbar 986 **Pressione Statica** mmH2O -4.4 Ossigeno di riferimento % 11 Massa volumica del gas 0,797 Kg/m³

Massa molare media della miscela gassosa

Composizione chimica della miscela gassosa Ossigeno

11,2 ± 0,3 % V/V gas secco

UNI EN 14789:2006

27,55

Anidride Carbonica

6,9 ± 0,3 % V/V gas secco

ISO 12039:2001

% V/V gas secco 81.9

Azoto Acqua

17,3 ± 0,2 % V/V gas

UNI EN 14790:2006

§ Dati normalizzati a 0°C, 101,3 kPa

Via Negrelli 13 39100 Bolzano (BZ)

Tel.: 0471-068620

Fax: 0471-068639

e-mail: info@eco-research.it Internet: www.eco-research.lt

Segue Rapporto di prova nº:

Del 31-ago-16

Rapporto di prova in sostituzione di 160429-01 del 23/06

Pagina 2\4

			Pos	lveri				
	Controllo		2	3				
	igėllo (mm):		6	6				
Flusso di aspirazio			14,9	15,4				
Volume aspirato nórm			1570	818				
	ionamento:	1	13/04/16	13/04/16				
		15:54 - 18:20	18:50 - 21:11	21:33 - 22:33				
Durata effettiva pre			120	60				
Temperatura		far-man, ray, propriation	135	135				
Pressione static		 	5,6	5,6				
Pressione atmosfer		985	985	986				
Ossigeno di Rifer			11	11				
Ossigeno medio mi		j }	11	10,9				
Anidride Car			7,6	7,8				
	redia (m/s):	14,1	14,7	15				
	ita (Nm³/h):	37400	38908	39743		,		
Polveri	U.M.				Media	Limite	Inc.	Metodo
	mg/Nm³	< 1,0	< 1,0	< 1,0	0,5	10		UNI EN 13284-1:2003
Aetalli				An and a second				UNI EN 14385;2004
Cadmio e i suoi composti	mg/Nm³	< 0,0010	< 0,0010	< 0,0010	0,0005	1		
allio e i suoi composti	mg/Nm³	< 0,0010	< 0,0010	< 0,0010	0,0005			
Somma Cd + TI	mg/Nm²	< 0,0010	< 0,0010	< 0,0010	0,0005	0,05		1:
intimonio e i suoi composti	mg/Nm³	< 0,0010	< 0,0010	< 0,0010	0,0005	1		
rsenico e i suoi composti	mg/Nm³	< 0,0010	< 0,0010	< 0,0010	0,0005			
obalto e i suoi composti	mg/Nm³	< 0,0010	< 0.0010	< 0,0010	0,0005	-		
cromo totale e i suoi composti	mg/Nm³	< 0,0010	< 0,0010	< 0,0010	0,0005		1	
fanganese e i suoi composti	mg/Nm³	< 0,0010	< 0,0010	< 0,0010	0,0005			
lichel e i suoi composti	mg/Nm³	< 0,0010	< 0,0010	< 0,0010	0,0005	 		annaka kan kan a makaka an masa a
iombo e i suoi composti	wa/Nw ₄	0,0024	0,0017	0,0014	0,0018		±0,0004	
ame e i suoi composti	mg/Nm³	< 0,0010	< 0,0010	< 0,0010	0,0005			, , , , , , , , , , , , , , , , , , , ,
lagno e i suoi composti	.mg/Nm³	< 0,0010	< 0,0010	< 0,0010	0,0005			
anadio e i suoi composti	mg/Nm³	< 0,0010	< 0,0010	< 0,0010	0,0005			
omma Sb-As-Pb-Cr-Co-Cu-Mn-NI- n-V	mg/Nm²	< 0,010	< 0,010	< 0.010	0,005	0,5		
	mg/Nm²	0,0080	< 0,0050		·			

		<i>ivier</i>	curio
Controllo:		2	3
Diametro ugello (mm):	6	6	6
Flusso di aspirazione (it/min):	9,9	9,8	11,5
Volume aspirato normalizzato (it):	514	515	606
Data campionamento:	13/04/16	13/04/16	13/04/16
Ora inizio - ora fine:	14:39 - 15:39	17:20 - 18:20	20:11 - 21:11
Durata effettiva prelievo (min):	60	60	60
Temperatura Fumi (°C):	132	135	135
Pressione statica (mmH20):	-6,1	-6,1	-6,1
Pressione atmosferica (mBar):	985	985	986
Ossigeno di Riferimento (%):	11	11	11
Ossigeno medio misurato (%):	11,2	11,2	1.1
Anidride Carbonica (%):	6,9	7,3	7,5
Velocità media (m/s):	13,7	13,6	14,5
Portata (Nm³/h):	36534	36132	38542

			77.7	00012	į.			
Prova	U.M.				Media	Limite	Inc.	Metodo
Mercurio	mg/Nm³	< 0,0010	< 0,0010	< 0,0010	0,0005	0,05		UNI EN 13211:2003 + UNI EN ISO
					4			12486:2013

Via Negrelli 13 39100 Bolzano (BZ)

Tel.: 0471-068620 Fax: 0471-068639

e-mail: info@eco-research.lt Internet: www.eco-research.it

Segue Rapporto di prova nº:

Del 31-ago-16

Rapporto di prova in sostituzione di 160429-01 del 23/06

Pagina 3\4

lio: 1	60	3 3,02 162 13/04/16-13/04/16 21:33 - 22:33 60				
it): 153 to: 13/04/16 ne: 15:54 - 16:54 n): 60	147 13/04/16 18:50 - 19:50 60	162 13/04/16-13/04/16 21:33 - 22:33				·
to: 13/04/16 ne: 15:54 - 16:54 n): 60	147 13/04/16 18:50 - 19:50 60	162 13/04/16-13/04/16 21:33 - 22:33				
ne: 15:54 - 16:54 n): 60	18:50 - 19:50 60	13/04/16-13/04/16 21:33 - 22:33				
n): 60	60	 				
n): 60	60	 				
C): 137	·					
	135	135				
r): 985	985	985				
6): 11	11					
	1		Madia.	Limita		
< 0,01	< 0.01	< 0.01		4	_ IIIC,	Metodo
<10						ISO 15713:2006 (*)
· 	1,0	< 1,0	0,5	10		UNI EN 1911:2010
< 5,0	< 5.0	< 5,0	2,5	50		UNI EN 14791:2006 Met 8.1
9	< 0,01	<0.01 <0.01 <1.0 <1.0 <5.0 <5.0	< 0,01	Media < 0.01 < 0.01 < 0.01 0,005 < 1.0 < 1.0 < 1.0 0,5 < 5.0 < 5.0 < 5.0 < 5.0 2,5	Media Limite	Media Limite Inc.

			Ammoniaca			
	Controllo:		2	3		
Flusso di aspiraz	ione (it/min):	3,37	2,97	2.9		
Volume aspirato nom	nalizzato (It):	178	158	155		
Data cam	pionamento:	13/04/16-13/04/16	13/04/16-13/04/16			
Ora iniz	lo - ora fine:	14:39 - 15:39	17:20 - 18:20	20:11 - 21:11		
Durata effettiva pr	ellevo (min):	60	60	60		
Temperatu	á Fumi (°C):	132	135	135		
Pressione atmosfe	rica (mBar):	985	985	985		
Ossigeno di Rife	rimento (%):	11	11	11		
Prova	U.M.	1				

Prova	U.M.		<u> </u>	L	Media	Linette		And the second	
Ammoniaca	mg/Nm³		1			Limite	Inc.		
<u> </u>		< 1,0	< 1,0	< 1,0	0,5			EPA CTM-027 1997 (*)	_

gramme in the state of the stat			Compone	nti del gas
<u></u>	Controllo:		2	3
	Data camplonamento:	13/04/16-13/04/16	13/04/18-13/04/16	13/04/16-13/04/16
<u></u>	Ora inizio - ora fine:	14:39 - 15:39	17:20 - 18:20	18:50 - 19:50
Durata	effettiva prelievo (min):	60	60	60
	Temperatura Fumi (°C):	135	136	135
Ossi	geno di Riferimento (%):	11	11	11
Prova	U.M.			·

FIOYA	i U.M.	l .				<u></u>		
Monossido di carbonio (CO)		l	F	r	Media	Limite	Inc.	Metodo
	mg/Nm³	10	- 10	9	10	100	±2	UNI EN 15058:2006
Ossidi di azolo (come NO2)	mg/Nm³	78	67	77	74	200	±7	UNI EN 14792:2008
			PM 2	5_10				

			P.W. 2.3-10	
	Controllo:			
Flusso di aspirazi	one (lt/min):	11,12		٠
Volume aspirato norm	alizzato (it):	4403		
		28/07/16-28/07/16		
		11:00 - 18:30	· · · · · · · · · · · · · · · · · · ·	· —,
Durata effettiva pre	lievo (min):	450	the same of the sa	
Temperatura	a Fumi (°C):	140		
Pressione atmosfer	rica (mBar):	989		
Ossigeno di Rifer			•	
Ossigeno medio m		13,5		
	lmidità (%):	22,9		
Anidride Car		6.2	The second second of the secon	
	redia (m/s):	19,3		
	ita (Nm³/h):	50752		
Portata Sec		39130		
Prova	U.M.			

Prova	U.M.		L	water commercial and demonstration of	Media	Limite Inc.	
Polveri fini espresse come PM10	mg/Nm³	< 0,10			media	Limite Inc.	Metodo EPA OTM027 2009 (*)
Polveri fini espresse come PM2,5	mg/Nm²	< 0,10		* *************************************	}		EPA OTM027 2009 (*)

Via Negrelli 13 39100 Bolzano (BZ)

Tel.; 0471-068620

Fax: 0471-068639

e-mail: info@eco-research.it Internet: www.eco-research.it

Il direttore

RLERAlba

Segue Rapporto di prova no:

Del 31-ago-16

Rapporto di prova in sostituzione di 160429-01 del 23/06

Pagina 4\4

Note al rapporto di prova:

Il sistema di filtrazione utilizzato è in titanio, con filtro ditale in fibra di quarzo ed ugello avente diametro di 6 mm. Linea di prelievo in vetro.

I risultati delle concentrazioni degli inquinanti sono espressi sul fumo secco, normalizzato a condizioni normali (273°K e 101,3 Kpa), per un contenuto

Durante tutto il periodo del campionamento non sono state evidenziate anomalle significative nel processo dell'impianto.

Limite di determinazione <0.3%

Sensibilità al flusso del campione 0.0%

Sensibilità alla pressione ambiente 0.0%

Sensibilità alla pressione ambiente 0.0%

Deriva di zero 2.00%

Interferenze 0.8%

Interferenze 0.8%

Durante tutto il periodo del prellevo non sono stati registrati dati anomali nelle misure puntuali. Per un problema tecnico al sistema di campionamento, problema non riparabile sul posto, la determinazione della frazione PM2,5 e PM10 non è

Le misure sono state eseguite nel rispetto delle prescrizioni di I valori di concentrazione riscontrati inferiori ai limiti di quantificazione concorrono all'espressione delle somme e delle medie riportate nel rapporto di prova nella misura DL/2.

I limiti di cui sopra si riferiscono a Autorizzazione Integrata Ambientale Deliberazione n. 428 del 14/04/2014 emessa da regione Basilicata: Tabella 2: valori ilmite per polveri totali, TOC, HCl, SO2, NO2, NH3 Colonna C medi su 30 minuti; Tabella 4: valori limite per metalli e HF Colonna A medi su campionamento di 1 ora

Misure eseguite da sig. Mirko Signorello e dr. Giuseppe Monteleone abilitati per il campionamento delle emissioni gassose, con strumento HORIBA mod. PG250 SN PLK70V5HH. Il gas è stato prelevato mediante sonda riscaldatà e gruppo frigorifero termostatato a 4°C prima dell'analizzatore. Range di lettura: CO2 0-20% V/V; CO 0-200ppm (= 0-250 mg/m3); NOx 0-500 ppm (= 0-1025 mg/m3); CO2 0 - 20%. Prima e dopo l'inizio delle misure lo strumento è stato verificato mediante utilizzo di gas certificati matricole interne M 815; M 824 prodotti da Air Liquide aventi le seguenti concentrazioni: CO2 5,14 - 18,93 % V/V ± 2%; CO 50,30 - 945,8 ppm ±2%; NO 51,6 - 899 ppm ±2%.

Caratteristiche dell'analizzatore per la determinazione di NOx:

Tempo di risposta 50 sec Errore di linearità 1.66%

Deriva di span 1.9%

Sensibilità alla temperature ambiente 2.88% Sensibilità alla tensione elettrica 0.0%

Efficienza del convertitore 97.6 % Perdite sistema 2,0 % del fondo scala

Scarto tipo di ripelibilità, a zero di concentrazione < 0.1% Scarto tipo di ripetibilità, alla concentrazione di span 0.8%

Caratteristiche dell'analizzatore per la determinazione di CO:

Tempo di risposta 50 sec Errore di linearità 0.2%

Limite di determinazione 0.4% Deriva di zerro 1.00% Deriva di span 0.8%; Sensibilità al flusso del campione 0.0%

Sensibilità alla temperature ambiente 1.8% Sensibilità alla tensione elettrica 0.0%

Perdite sistema 2.0 % del fondo scala Scarto tipo di ripetibilità, a zero di concentrazione < 0.1%

Scarto tipo di ripetibilità, alla concentrazione di span 0.5%

Pareri ed interpretazioni non oggetto dell'accreditamento ACCREDIA:

Per la valutazione del rispetto dei limiti si riporta quanto espresso dal manuale ISPRA 52/2009 "L'analisi di conformità con i valori di legge: il ruolo dell'incertezza associata a risultati di misura", al punto 5.3: "Quando le norme di riferimento o gli utenti delle misure non indicano le regole decisionali, per l'analisì di conformità deve essere utilizzato un criterio probabilistico che considera il Risultato della misura ® non conforme quando risulta maggiore del VL (valore limite) con una probabilità maggiore del 95%. Ovvero il campione è non conforme al VL quando il risultato della misura del 08%. misura supera il VL oltre ogni ragionevole dubbio cloè tenendo conto dell'incertezza di misura (U), stimata ad un livello di confidenza del 95%.

L'incertezza riportata nel presente documento è l'incertezza estesa ed è ottenuta moltiplicando l'incertezza tipo composta per un fattore di copertura k = 2, che per una distribuzione normale porta ad un livello di confidenza approssimatamene del 95%. Per I valori Inferiori al limite di quantificazione, l'incertezza non viene espressa. Il presente rapporto di prova, riproducible solo integralmente salvo autorizzazione scritta del ns. Laboratorio, riguarda eslusivamente il campione spttoposto a prova.